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Abstract

Thenrctical studies of systematics of neutron scattering cross sections on
various materials for neutron energies up to several MeV are of practical
importance. In this work, we investigate Elastic Cross-section Dependence on
Target Mass Number using Statistical Optical Model code SCAT2. We also

compare the calculated cross-sections with those given in Evaluated Nuclear
Data File (ENDF-VI),



CHAPTER 1
INTRODUCTION

In its broadest sense, the subject of nuclear reactions includes all those processes in
which a nucleus interacts with another nucleus or an elementary particle. When we
study these processes, we want to understand what happens, and this means
understanding the probabilities for the emission of various particles, their
polarizations and correlations, indeed all the features of the reaction that can be
experimentally determined. By “understand” we mean not only the ability to calculate
these probabilities from theories of nuclear reactions and nuclear structure. but also
the physical understanding that enables us to know, to some extent, what will happen

in particular cases even before we make any calculations.

The process of understanding proceeds in several interacting stages. Firstly come the
experimental data on reactions, itself often obtained in response to previous
theoretical speculations. Secondly there is the idea that perhaps this data may be
understood by using a particular model of the nucleus concerned. Thirdly this model
is expressed in mathematical form, developed to account for the reaction of interest.
programmed for a computer, and used to obtain quantitative predictions. Fourthly
these predictions are compared with the data, and conclusions drawn about the
applicability of the model. These may suggest more experiments. the modilication of

the model used, or the development of a new model.

Over the last seventy years, many studies of the nuclear reactions have been made,
and a vast amount of data accumulated. Much of this is quite well understood in terms

of nuclear reaction and nuclear structure theorics,

In recent times, the concept of an accelerator driven suberitical (ADS) system is
drawing worldwide attention. In this ADS system, neulrons are produced by
bombarding a heavy element target with a high energy proton beam ol typically above
1.0 GeV with a current of greater than 10 mA. Such a system serves a dual purpose of
energy multiplication and waste incineration. In this context, theoretical study of
systematic of neutron scatlering cross-sections on various materials for neutrons

energies up to several hundred MeV are of practical importance.



Nuclear cross-section data arc nceded for many applications in scicnce and

technology. Mostly these cross-scction data arc supplicd by experiment. ‘There arc.

however many situations where model calculations can supply experimental cross-

scctions. Using “ABAREX™, “SCAT2™, “ALICE" ..cte. we can calculate the

integrated and differential cross-sections for a particular target with incident particle
of different encrgies.

In this work we -investigate the clastic cross-section dependence on targel mass

number using SCAT?2 especially for 3-1i-7. 6-C-12. 12-Mg-24. 17-C1-36. 20-Ca-40.

22-Ti-48.  26-Fe-56.  30-7Zn-64. 32-Ge-72. 38-Sr-84.  42-Mo-96. 48-Cd-108.
50-Sn-120, 54-Xe-132

32, 60-Nd-144. 64-Gd-160. 72-1f-180. 81-T1-200. 90-Th-232
and 92-U-238. using SCAT2 and compare the results with those given in ENDI V.
We chose the targets to be light ones. intermediates ones and heavy ones so that the
code may be valid for all kinds of nuclides. We sce the results are quite the same and

SCAT2 is found to be an efficient tool in studying nuclear cross-sections.



CHAPTER 2
THE IDEA OF OPTICAL MODEL

2.1 Introduction

When a projectile undergoes elastic scaltering

the internal energy of the target is
unchanged but the projectile is scattered out gy

SO i Eoracion s ! n.t" the incident beam in a manner which
n the projectile and the target.

Smr::e the nucleus is a quantized system it may exist in one of a discrete spectrum of

excited states, each one characterized by a set of quantum numbers, and the higher

states may be Eiﬁﬂiied in the process of inelastic scattering in which the projectile

transfers a definite amount of energy to the nucleus. Alternatively, the projectile may

be captured and a different particle may be emitted, or the original particle may

reappear accompanied by other particles. In each of these processes the residual
nucleus is left in a well-defined state [11].

Thus the study of elastic scattering provides information about the nucleus in its
normal or ground state, while the study of inelastic scattering and reactions provides
information on the existence, location and properties of its excited states. Each
process is characterized by a cross-section o which may be defined as the probability
that the process will occur if the incident beam carries one particle per second and the

target contains one nucleus per unit area.

The cross-section do measures the probability that the reaction product will appear
within a solid angle d€2 about a given direction. The angular distribution of the
reaction product as a function of the scattering angle is normally measured at a fixed

energy corresponding to on¢ of the peaks in the energy spectrum. This measurement

gives the differential cross-section do/dQ for the excitation of a particular final state.

Some information can be deduced directly from the appearance of the various cross-
sections but more detailed interpretation requires a comparison with theoretical

predictions for the cross-section. The interaction V(r) between the projectile and the
target is a function of their relative positions. e, r =1 — r anditis therefore
> s o of reference in which the target is
i the laboratory frame €
convenient to transform from



at rest before collision to the center-of.

mass frame i
W inw -0f-
hole system is perm ently at rest (5], hich the centre-of-mass of the

The same gen :
eral re 2
sult holds in quantum mechanics and we have

Schrédinger e to solve the
quation fi art
or the particle of reduced mass for a suitably chosen interaction

potential and to ob
tain particular solutions by applying th
conditions. g the appropriate boundary

the laboratory fra i
B ry Irame, the incident beam passes through a collimating slit before
arget
fage sesmmmes dE and so forms a wave packet but the size of the wave packet is so
ed wit i _ _
h the size of region in which the scattering potential is effective

that it i1s a go R
it good approximation to replace the wave packet by a plane wave of infinite
extent.

In the -of- :
centre-of-mass frame, the time-dependent wavefunction is given by

‘i'EPf
Y =vye @.1)
and time-dependent equation is
\% 14;+—-——[E -V]y = {2.2)

Before the scattering occurs we have a collimated beam of particles moving along the
z-direction with momentum hk =pv. This beam is represented by the plane
wavefunction

y =e™ whichis the solution ol equation (2.2) with V=10

For the incident beam the probability density 1s

L] "} 1.
p,=w w= iy
and the probability current density is

; hk
=_L(w'vxp—w?w fE— (2.4)
1

Jin 2},1 K



For the scattered beam the probability density is

£(8)
P - I£( 2)|
r (2.5)

and the probability current density is

T T
Jm-“ﬁﬁwﬂ (2.6)

On the surface of 5 sphere the element of area is ds = r? dQ, so that the current passing

through an element of solid angle dQ) is (hk'/ p.]lf (BJ|2dQ, but the cross-section do is

just the ratio of the flux through the solid angle dQ2 to the incident flux. Hence

do = %|f{ﬂ)[2d§l

(2.7
and for elastic scattering &' = k so that
do 2
—=|f(8)|" . 2
g @) .

To calculate the cross-section we have to solve the time-dependent Schrodinger
equation with a given potential and find a solution \ which has the asymptotic
behaviour of an outgoing scattered wave and an incoming plane wave, i.e.

ik'r
v ez o f(0) € (2.9)
r

T —#o0

The differential cross-section in the laboratory system is related to the difterential

cross-section in the centre-of-mass system by the expression



d
a%(ﬂ,w) = (I+v? +2vcosg)Y 2 do
*+V cosg o ® (2.10)

SPeed of the cengre

-0f-mass i
cle in

speed of the scattered part; the laboratory system to the

the Centre-of-magg System, and

tan®,, =sip 0/(v + cos) |
@.11)
The total Cross-section jg given by
n
do
C=2% |—sino dg
e | (2.12)

The interaction
between the nucleon and the nucleus can be represented by a potential

which varies Smoothly with mass number

. y A and projectile energy E, and a residual
Interaction. Scattering due 1o the

_ potential is called shape elastic or potential
scattering,

When the incident nucleon interacts with

the nucleons in the nucleus through the

residual interaction the target nucleys becomes excited. If the nucleon has moderately
high energy,

the major part of this energy is quickly carried away of an emitted

particle, and a direct reaction or direct inelastic scattering occurs. If the incident

nucleon makes repeated interactions inside the nucleus, the structure of the (A+1)

system becomes very complicated and the energy of the incident nucleon becomes

distributed among many particles. At this point it is said that a compound nucleus has

been formed, and examination of the Cross-section as a function of the energy of the
incident nucleons shows sharp peaks or resonances which correspond

of a quantized state of the (A+1) system.

to the formation

Eventually the compound nucleus must decay and the incident nucleon may reappear
to give compound elastic scattering. The occurrence of the various non-elastic
processes means that nucleons are lost from the incident beam and hence the number
of nucleons in the elastically scattered beam is reduced. This eftect is taken into
account in calculations by including in the potential a part which causes a reduction in
the intensity of the scattered beam, and this total potential which describes the elastic

scattering is called the optical potential.



2.2 The Optical Model

immediately

section for reaching
the surface turns out (o be a monotonijcall

y decreasing function of the energy, varying
as £

12
for sm i i
small energies and reaching the asymptotic value 21R? for large energies.
At the neutron energies involved, bet

. ween 0.1 MeV and several MeV, and for
Intermediate or heavy nuclej

» individual resonances cannot be resolved, and the
measured cross sections are averages over many levels.

The optical mode] describes the effect of the nucleus

on the incident particle by a
potential well -V, (1), but

allows for the possibility of compound nucleus formation

by adding to the potential a negative imaginary part, -iV(r). This part produces

absorption of the incident particle within the nucleus, and this absorption is supposed

to represent the formation of the compound nucleus [1].

The basic task of nuclear-reaction theory is to find a solution of the Schrédinger
equation of the system under consideration that satisfies the appropriate boundary
conditions. This Schrédinger equation is a many - particle one, so that the total wave
function depends on the coordinates of all the interacting particles, and the potential is
the sum of all the interactions between them. To solve such an equation is an almost
impossible task, so at the outset we assume that the interaction between the incident
particle and the target nucleus can be represented by a simple one-body potential V(r),
where r is their separation. This assumption may be partly justified by considering the
single-particle shell model, and the general form of V(r) can be found. Throughout the
analysis we work in the centre — ol — mass system. with the exception that by

convention the energy of the incident particle is quoted in the laboratory system.
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On

the optical mod
| el, compound nucleus formation does not occur immediately or
with complete certainty,

removed from i Even if the incident particle has entered the nucleus, it is
om .
its free particle state only with some delay and with a certain

probability. Th
gl fi _E model has also been extended and applied with more complicated
potential functions to other nuclear reactions and cross sections.

The feature of n .

del ; uclear scattering cross sections can be explained by a very simple
model in which ) )
Wwe represent the interaction between the incident nucleons and the

nucleus b 5 )
y a one-body potential that depends only on the nuclear radius. This is called
the optical model.

%ﬁ; I:t:j:lt:ar %catterin_g Processes and Optical Model Potential
ptical model potential can be used to calculate the differential cross-section for

the elastic scattering of nucleons by nuclei making use of the quantum mechanical
scattering formalism. This calculation gives only the direct elastic scattering so the

comparison with the experimental cross-section must only be made at energies high

enough for the compound elastic cross-section to be negligible [2].

The potential experienced by a particle incident on a nucleus is the extension to

positive energies of the shell-model potential for bound nucleons. The full optical
potential is

V)=V () +Uf,(O)+iwf (r)+V,(r) (2.13)
Z.7Z.¢ I*
v =24t 3., <R, (2.14)
(") 2Rc ( R;} ;
=t k. (2.15)
T

where Z, and Zy are the charges of the incident particle and target nucleus.

The Coulomb potential V(r) is that of a charged particle in the electrostatic field of
the nucleus. This is calculable from the nuclear charge distribution, but in practice it is
sufficiently accurate L0 usc the potential due to a sphere of radius R, with its charge

uniformly spread throughout its volume.
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The real part sezayy
the i c-d: °f }he potential is due to the action of all the nucleons in the nucleus on
Incident particle, and is thus approximately given by

U= 2V(e=xly = focr') v(lr-rfyar @.16)

where i :
P(r') is the nuclear density and V|r-r] the effective interaction between the

incid i th the
ident particle and a nucleon in the nucleus. Since the nucleon-nucleon interaction
has short range, it can be expressed by a delta function, giving ,

V()= [p )V, 8(r-r)dr’ = U, p(r) @.17)

Thus to first approximation we expect the optical potential to have a radial variation
that follows the nuclear density quite closely, with perhaps a somewhat greater radius
reflecting the finite range of the nucleon-nucleon interaction. It is useful to represent
this radial dependence by an appropriate analytical expression, and for this purpose
the Saxon-Woods form is particularly convenient so the real potential becomes

U =U f,(N=—"% @18
1+¢KP(T]

where R is the radius and a is the surface diffuseness parameter.

The nucleon-nucleon interaction is purely real, so this argument applies only to the
real part of the nucleon optical potential. Feshbach, Porter and Weisskop assumed that
the real and imaginary parts of the optical potential have the same form, and this is
still widely followed. Since the imaginary potential takes into account in a global way
all the non-elastic processes that remove flux from the clastic channel it is not
possible to establish its form by simple physical arguments. The best fits are obtained
by adding to the volume imaginary potential a surface-peaked potential of the radial

derivative form.

4cxp{r—-—R)
df(r) _ a 2.19)
B=—da = "= —— R
T [+exp( T}]'

where the factor 4a is introduced to ensurc that g (R)= 1.
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The imaginary part of the potential ‘increases in magnitude with the energy to take

account of the increasing cross-sections of the various non-elastic reactions.

These radial forms for the nucleon optical potential sufficed until quite: recently, when

evidence from proton elastic scattering ‘indicated the need for a modified format
higher energies.

Nucleons have spin one-half, and even if the incident beam is unpolarised we find that

the scattered beam is polarised. This polarisation can be calculated from the optical
model which is added spin-dependent term [3].

The spin orbit term is

"
V(1) = (—)? Vs R 0) Lo (2.20)
me r dr

The form factor f; (r) has the Saxon-Woods analytical and usually a rather smaller
value of the radius parameter. This spin orbit potential is the extension to positive
energies of the term in the simple shell model potential that gives the spin-orbit

splitting needed to account for the magic numbers.

With the addition of the spin-orbit term to the optical model potential the calculation
of the observable quantities from the Schrédinger equation proceeds in essentially the
same way as before, except that now there are two radial wave equations

corresponding to the two possible spin orientations relutive to the orbital angular

. The phase shilts

[

momentum. These combine vectorially, J=148 so that ./ = [ +

corresponding to these two spin orientations for ¢ach L can be combined to give not
only the differential cross-section but wlse the polacization as a function of the

scattering angle.

The optical model can be applied to the scattering ol deuterons, tritons, alpha-particles
and heavier nuclei. Many optical model analyses have been made ol the elastic
scattering of deuterons, hellions, tritons and alpha-particles by nuclei. As for

nucleons, the depths of the real and imaginary parts of the potential, and of the spin-
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are found to vary smoothly wi
w ucleus to
another. y with energy and from on¢ n

There are many ot
Y other processes that can take place in the time it takes the projectile to
cross the target nucleus, The simplest

target, raisi is inelastic scattering, which gives energy to the
raising it t : =
, 8 11 10 an excited state. The projectile emerges with reduced energy and

changed state of 1zati
. polarization. Such processes [;,n::m:mll*j,ur excite the collective states of
nuclel.

Ine}astic scattering occurs when a projectile interacts with a nucleus and gives it some
of its energy, raising it to an excited state. At low energies the nucleus can be exited
purely by the Coulomb field between the projectile and the target; this is known as
Coulomb excitation and is appreciable only for highly charged projectiles.

The simplest model of inelastic scattering is to assume that the incident particle

interacts with one nucleon in the target and promotes it to a higher energy state. The

cross-section for this process is proportional to the absolute square of the matrix
element.

M=y, |V]v,) 2.21)

where y; is the wave function of the initial state ( incident particle + target ), wy that

of the final state and V the interaction responsible for the excitation.

Many calculations have been made with this model, and in most cases it has been

found that the calculated cross-section is 100 small.

For rotational nuclei the radius
R (0.0) =R, {1+BY:(0.9)} (2.22)

where B is the deformation parameter. The nuclear potential is assumed to depend on

the distance from the nuclear surface so that to first order in

dv
V(r—R(B.¢))=V(r-Ro}-BR{.Y;'(B.M—d}- (223)



12
The i - ot o 5 oot
¢ Hirst term is the spherical optical potential between the target and the projectile,

and the : _ .
“““‘"‘d Bives the coupling potential between the incident and outgoing
channels that is the interaction potential.

In the case of vibrational nuclei, the radius is

ROH=Ro(1+ o, YI' 0.4)) (2.24)

where the o are time-dependent distortion parameters.
If a root-mean-square deformation parameter is p? = (O] Jot|'|0) , the potential is
m

V(I-R(®,4)=V(I-R)-D aiR, Y™ (B,¢}“Li. (2.25)
™ T

The compound nucleus model was introduced by Bohr to explain the narrow
resonances observed in experiments with low-energy neutrons. It is assumed that the
incident neutron and the target form a compound nucleus in which many of the target
nucleons participate collectively and the kinetic energy of the incident neutron is
shared with these target nucleons. The participation of many target nucleons is
necessary to produce the closely spaced levels of the compound system. On the basis

of this many-particle picture, it must take some time for a single nucleon in the

compound nucleus to acquire sufficient energy to be emitted and therefore the

n of the excess energy of the compound system in the form of a y - ray is
highly probable.

emissio

In the compound nucleus model it is assumed that the mode of decay of the

compound nucleus is independent of its mode of formation. A reaction can be

represented as a two-stage process

A+a—>C —>b+B

where C* is the compound nucleus, and the decay of C’ should not depend on the

nature of the projectile a and the target A. Comparison of the decay of the same

compound nucleus formed by different primary interactions have verified this
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independence hypothesis

in the inte ' : :
rmediate €nergy region. Such comparisons must

or the same range

of excitation energies.

i
W

N the time it takes the incident parti
ot article to traverse
the target nucleus; this js typically 10" 1o 1022 p

aptu
and a thorough sharing of its energy
nucleon or group of nucleons near
enough energy for

It to esc :
of Tl T APe, Just as a molecule may evaporate from a heated drop
1quid. This process continues until

emission and then the nucleus emits

s, depending on the energy and target.

re of the incident particle by the target nucleus,
amon

Compound processes follow the ¢

g the target nucleons. After a long time a

the surface may be a statistical fluctuation, receive

the energy is below the threshold for particle
- 4 gamma-rays until it reaches its ground state.
mpoun
po processes take much longer than direct processes, typically around 107
seconds.

Because of the difference in their

time scales, direct and compound processes add
incoherently.,

Itis thus possible to calculate their cross-sections separately, and then
add them together

for comparison with the experimental data. At low energies it is
however also possible for the projectile to be captured by the target nucleus to form a
compound nucleus that subsequently decays by particle emission.

Compound nucleus reactions are more important at low energies. At low energies the
reaction may go through a single state in the compound nucleus to a single state in the
final nucleus. The cross-sections of such reactions as a function of energy show a

pronounced resonance structure that may be analysed by the Breit-Wigner theory.

For charged particles it is necessary to add the Coulomb amplitude to the Breit-
Wigner amplitude and at higher energies there is also direct nuclear amplitude that for
elastic scattering can be calculated from the optical model. The formalism may be
extended 1o treat reactions exciting two overlapping levels, but as the mean level
spacing D becomes comparable with the mean level width 17 such caleulations

become impracticable and a statistical approach must be used.
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When I' >>D, so that the levels overlap strongly, and the energy resolution AE <T,

the cross-sections fluctuate as a function of energy, but in so complicated a way that it
is not possible to identify the contributing resonances,

If the energy spread  AE >> I, many states in the compound nucleus are excited, but

the fluctuations are no longer apparent. At low energies these reactions proceed only

to discrete states in each residual nucleus R'. As the energy increases it becomes

possible to reach the unresolved continuum of states in R’

the cross-section going to the discrete states is

, and at still higher energies
negligible and we only need to

consider the continuum states. In direct interactions, the projectile retains its full

energy and leaves the target nucleus in its ground state, These are called direct or

shape elastic scattering. If the projectile gives energy to the target, leaving it in an

excited state, the interaction is called direct inelastic scattering.

Compound nucleus reactions in which the projectile is captured by the target, which
attains statistical equilibrium and then decays by particle and gamma emission. If the

emitted particle is the same as the projectile and has its full energy it is called

compound elastic scattering whereas if it has less than the full energy it is
compound inelastic scattering.

It is also possible for different particles to be emitted, both by the direct and by the
compound processes, and the probability of this happening increases with the incident
energy. At low energies each of these reactions leaves the residual nucleus in a
particular final state, and the Q value of the reaction determines the threshold energy

below which the reaction cannot take place.

2.4 The Compound Nucleus Process
In a nuclear reaction, the incident particle is absorbed by the initial, or target, nucleus

to form a compound nucleus. The compound nucleus disintegrates by ejecting a

particle or a y -ray, leaving the final, or product, nucleus.

To illustrate the types of processes that can occur when a nuclear interaction takes
Place, we shall consider what happens when a proton is incident upon a nucleus. At
energies low compared with the Coulomb barrier the proton interacts only with the

Coulomb field of the target nucleus, and it is elastically scattered according to



Pound elastic Scattering. As the incident energy rises,

more and more reaction chanpels open up, and

this process becomes increasingly
importable [7).

Structure of the target nucleus. In the

well-spaced energy levels, the reaction

In many of these reactions at medium €nergies more than two particles are emitted.
Nuclear reactions may be classified as compound-nuclear

or direct, depending on
whether or not they pass through the intermedjate comp

ound-nuclear state. Both
processes may simultaneously contribute to the re

action in a particular channel,
Although the dire

Ct particles are emitted immediately and the compa

und nuclear
particles some time later. the time

lapse is still very small compared with the
resolution of the most refined detecting apparatus. The particles cannot therefore he
distinguished experi mentally. and so the cross-sections calculated for the 1wo
processes have to be combined before comparison is made with the ex perimental data.
Once a nucleus is excited, it can decay in a variety of ways, by fission, by particle
emission, and by beta and gamma decay. The character of the processes ol nuclear
excitation and decay depends on the type of incident particle and of target nucleus,

and this determines the extent to which they are governed by the Coulomb field, or by
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i S
the nuclear field or by both together. All reactions are subject to the conservation law
of energy, spin, parity, isospin and baryon number, and studies of the relative
intensities of various reaction channels, and of the angular distribution of their cross-

sections, yield much detailed information on nuclear structure.

The particles of the highest energy of the same type as the incident particle
correspond to elastic scattering and the ones of lower energies to inelastic scattering.
For low energies on light nuclei discrete groups of particles at a series of encrgics arc
observed, and these correspond to excited states of the target nuclei and enable their
energies to be found [12].

At lower emerging energies it is often found, particularly for heavy nuclei with high
level densities at rather low excitation energies that the individual states are no longer
resolved and merge into a continuum. The corresponding continuum cross-sections

can also be analysed by the statistical theory of reactions.

As the bombarding energy increases the character of the reaction changes, and we
want to understand this in terms of a simple model. This will enable us to calculate
the cross-section and the other features of the reaction, and hence to obtain

information on nuclear structure.

At low energies, neutrons and protons interact very differently. Neutrons interact
strongly with the nucleus, and can be scattered or captured, whereas protons are
repelled by the electrostatic field of the nucleus and are scatlered elastically with a

cross-section given by Rutherford's formula.

Low energy neutron scattering is strongly affected by the structure of the compound
nucleus formed when the neutron is captured by the target. As we have seen, neutron
capture gives about 8 MeV to the nucleus, so the com pound nucleus is formed with an
energy of about (E, + 8) MeV, where [, is the energy of the incident neutron in (he
centre-of-mass system. At this excitation energy, most nuclei have a high density of
excited states, and as E, is increased, these are excited, one by one, As (he heutron
energy goes through the energy of the excited state ol the compound nucleys
resonance occurs, so that the scattering and reaction cross-seclion go through g

maximum. The energy at the maximum cross-scction corresponds to that of the
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excited state, and its width to the lifetime of the state. Between resonances, the elastic
scattering cross-section for other processes falls to zero. The angular distribution of
the scattering at the resonance tells us the angular momentum J of the excited staté of
the compound nucleus. Thus by analysing the cross-section of low energy neutron

scattering we can determine many of the properties of excited nuclear states.

At somewhat higher energies, approaching that of the Coulomb barrier, the protons
can also interact with the nucleus, and we observe rather similar cross-sections
showing the combined effects of resonance and Rutherford scattering. As the energy
increases still further, the density of states in the compound nucleus increases very
rapidly and soon it is no longer possible to resolve the individual resonances. This is
not just a matter of the energy resolution of the detecting equipment; the widths of the
states also on average increase with excitation energy and eventually with they
overlap more and more so that there is no hope of ever resolving them. When this

happens the cross-sections become much simpler, and vary quite smoothly with

energy.

2.5 Level Width and Nuclear Energy

In the discussion of energy states excited by nuclear reactions it is customary to use,

instead of the disintegration constant, a quantity proportional to it called the level

width, and defined by the relation, I' = 2

2rr
Its use is based on an application of the Heisenberg uncertainty principle. Level
widths are usually given in eV; for a wide level, I may be of the order of 10" eV, as
in the case of light nuclei, and the lifetime is 6.6 x 10 sec, while a sharp level width
of 0.1 eV has the relatively long mean life of 6.6 x 10"° sec. When the narrow level is

that of a compound nucleus, the lifetime of that level can be 10" s or 105,

Along with the level width, the level spacing D, or mean distance between levels, can
be obtained from resonance measurements and is an important quantity in nuclear
spectroscopy. The level width and level spacing are uselul not only for characterizing

compound nuclei, but for any excited nuclear states, and can be applied 1o both bound

and virtual levels.
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I, the widths are of the order of ¢V and the spacing of the order
of KeV, and in heavy nycje;

these magnitudes are substantially reduced. The study of
reésonance phennmena in n

uclear reactiong can be seen to have great importance
because it Provides infnrmatinn

about the width and spacing of the energy levels of
the compound nucleys, This reg

Onance behaviour persists for incident energies of up
1 and about 10 MeV for light nuclei.

At low bombarding eper

gies the excited levels of the compound nucleus are discrete
and may be Widely Spaced. This low energy region is therefore called the resonance
region. At higher bornbarding energies

more closely Spaced, broader,
overlapping résonances

the excited levels in the compound nucleus are

and partially overlapped, so that in this region of
the excitation

functions become much smoother functions of
energy. This energy region is called th

€ continuum region.

In the continuum region the fine structure of the resonances is often not resolved and

then excitation functions show broad maxima whose positions vary smoothly and
slowly with mass number. These giant resonances hav
spacings of about 102° MeV.

¢ width up to a MeV and

The dependence of the width and spacing on the mass number and the excitation
energy of the nucleus provide the theories of nuclear reactions and nuclear models.
The partial widths of a level of the compound nucleus give the relative probabilities
for different modes of disintegration, and these probabilities also yield information

about nuclear structure.

‘ . sef :cause values ol these widths can often be
I " leve ths is usetul because values ¢ d
he concept of level wid

obtained from measurement of resonances.

ith the level width, the level spacing D. or mean distance between levels, can
Along with the leve . L ,
T le : - ear
ined fi resonance measurcments and 1s an important quanfity 1n nuclea
be obtained from re

- o] ' i erizin
The level width and level spacing are uselul not only for charact g
c leve
spectroscopy.

d nuclei. but for any excited nuclear states, and can be applied to both bound
compound nuclei,

and virtual levels.
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2.6 The Sta

tistica]
When the co Appruach

Mpound Nuclear stgqeg are strongly overlapping any compound nucleus

When a ; . ; .. .
€N a nuclegp Interacts wity, il can be scatlered immediately; this is elastic
scattering, if i

nucleus,

We can CXpress the Cross-section of 3 tompound nucleus reaction T,y from the « to
the B channe] ag 4 product of th

€ Cross-sections for the formation of the compound
nucleus from the channe] ¢ and t

1€ probability of the decay into the channel B,
Cap =0, (CN)P, (2.26)

In the region where the widths of

the resonances are of the order of their spacing an
incident

heutron can excite Several compound states whose relative phases will
depend on the mode of excitation,

If the energy of the incident particle is sufficien

L 10 excite the system high in the
continuum regjon where

the density of overlapping levels js very
large number of stales are excited simultaneously, the phase relatio)
states may be regarded as

decay.

high and a very

13 between these

random at least with regard to the effect on the modes of

If the compound nucleus is sufficiently long-lived. thermodynamic equilibrium is set
up and the distribution of (he availuble encrgy follows the laws of statisticg]

mechanics,

The assumption that this equilibrium situation is reached s the busis ol the statistiea

model; it is assumed that the coergy and total angular momenium determine the
propertics of the compound nueleus so that apart from the vieregy dependence, gl

possible decay modes oceur with equal probability,

In the continuum region many channels are open Tor the decay ol the compowmd state

1 ’ Centinee ol s very small and
T -emission through the entanee channel _
and the probability of re-c



U (1) = e-ike r<R
(2.27)
where K
15 the waye Number ip the Internal regjon
The absorption Cross-section is given by
T
Oy = FZ@I +(1-[s,[
, (2.28)
Son(®) = S 241y -[g [y T
= ( )1 |sn] ) = F(ZHDT" (2.29)

where T,,:=1—|S|2= K . :
i (k+K)? 1s called the transmission coefficient for S-wave

neutrons.

Therefore the cross-section for the formation of the compound nucleus can be
represented by

m 4kK

Cen (@) =0y, =F(R+K)z (2.30)
and the cross-section for a particular channel reaction is
% =33 (k4+k§)2 %' =0
4 1
= ot € b (2.32)

At low energies, Ja bs kK vV

Yielding the 1/ v law for low energy neutron capture.
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s L3 . # an
It I, 1s the mean width for resonances due to particles in channel o and D is the me

spacing of level within an energy interval [ it can be written by

E+—1

1 L] ol
Oon(@) =1 f L DR i (2.33)
Bl T (E—En)1+(§l“)’

_Tm2n . nm . T
GCN(H)HFT\;E, =F2uﬁ (2.34)
L,_1 4K 2 (2.35)

In order to compare data at different excitation energies it is convenient to define in

energy independent quantity called the s-wave strength function as

! i va T,
el PP a2 i 1 2:36
D {E} D ( )

where Ej is an arbitrary energy taken to be 1 eV. Cqp and ogps can be related to the
reflection coefficients and s-matrix elements, but these coefficients must reproduce
the rapid fluctuations in the cross-sections due to the resonances and are therefore

very complicated functions energy comparison of equation

. 4kK =
S v 2.37
Oen (@) kK’ (k+K)? (2.37)
and equation
o =%Z(zf+1)(1—js,|3} (2.38)
i

then yields the expression for the transmission coefficient
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The over-all transmission coefficient can be represented by

4k
T 3K 2.40)

where P, is a Gamow-type penetration factor for the Coulomb barrier and centrifugal
. 4k .
barrier, and ‘E 1s the probability that the incident particle can pass successfully from

outside the nucleus, where its wave number is k, to the region inside the nucleus,
where its wave number is K (>> k).

According to the Reciprocity Theorem, the cross-section of the time —reverse of a
reaction is

Cus =04, =G,(CN)P, (2.41)
TP, =T,P, (2.42)
This is true for all channels o and B and

B

"
= Tﬂ g (2.43)

— 'n'-u

1+ 4

where € is a constant. The probability to a reaction in a particular channel is

proportional to the transmission coefficient in the channel.

Z P =1= Z pﬁ (2.44)
] B
P =ENT (2.45)
and therefore
T,
P =fT. ="t

and so



The compound nucleys Cross-se

clion of a reaction to a particular final state usually
rises rather rapidly immediately above thresholq
above threshold an

» reaches a maximum at a few MeV

direct contributions to (he Cross-section.

When the energy of the incident neutron is about 1 MeV or higher, new types of
processes can occur, such as inelastic scatte

ring and the emission of charged particles.
The emitted neutrons can have the residua

| nucleus in excited states so that some of
the scattering is inelastic

rather than elastic [12].



CHAPTER 3
NUCLEAR CROSS-SECTIONS

f ' t
thickness [10]. of the target material and the targe

It i i
13 therefore desirable o define concepts which are independent of

factors ang are
nuclear reactions,

these external

nuclides as the

» (3.1)

where Ny is Avogadro’s number, S the area of the beam, Ax the thickness, p the

density, and M the gram-atomic weight of the target material. Defining the beam

intensity I as the number of particles crossing a unit area per unit time, we make the

fundamental assumption that the change of intensity due to the thin layer is related to

as the effective area presented by all the scattered
particles is to the total area of the beam. According we take

the original intensity simply
as the definition of the

total cross section o of a single nucleus

Al -gNg -oNup

AXx = —onAx = ~pAx (3.2)
I S M

where 7 is the number of target nuclei per unit volume. The product p = o1 is called

the linear absorption coefficient. The product pAx measures in milligrams per square
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centimeter is SOmetimeg call

ed the “thickness”
nuclear crosg sections s 1024

of the target. A convenient unit for
2 gEE
em’, which is called a barn,

tal cross section for particles of a given energy, it
fractional change in the intensity of a monoenergetic

Known thickness, We use a thin layer to minimize the
error due

) (3.3)

If several independent Processes occur which can be experimentally distinguished by
the nature or energy of the Scattered or ejected particles, we may decompose the total

Cross section into partial cross sections for the various processes. Accordingly we set

=0, +a, +a, +"'=Z‘3L
i

(3.4)

where the partial cross section for i process is
G, = —u >
: N (3.5)

and n; is the number of processes or particles of the " type per unit time.

Experiments indicate that the transmission of neutrons or gamma rays through

moderately thick layers of target material obeys quite wel] a relation which may be

deduced immediately if we assume that only single collision processes take place. It
follows from this assumption that the energy of the particles in the beam at any depth

X in the material is constant. Treating o, therefore, as a constant, letting Al be a

differential, and letting I be equal to the Intensity at x = 0, we may integrate Eq (3.2)

to obtain
[ = lpexp(-onx) = lpexp(-p1x) (3.6)

The measurement of the ratio between the intensity transmitted through a known

thickness of target material and the original intensity, in conjunction with a
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determination of n

thus i
leads 10 4 Value for the total cross section. Most

§ Sections fgy Neutron
S and
targets and are based Upon Eq (3 6) N

measurements of Cros

gamma rays make use of thick

r the Kinetic energy range from 0.001 eV to
utron data (0.001 to 100 eV) have been obtained

crystal spectrometers. The data for medium-fast

around 20 MeV, The low-energy-ne

by using time-of-fl; ght methods ang

neutrons (10 keV to 3 MeV) have been obtained using neutrons from the "Li(p, n)'Be,
the ’C(d, n)"*N

3 : iy
» and the D(q, n)'He reactions where the incident deuterons or
protons are accelerated by an electrostatic generator.

By carefully regulating the
incident beam, by limiting the angle subtended by the t

limit energy spread of the neutron beam in this
sacrificing intensity,

arget, it has proved practical to

region to as low as 1 keV. To avoid
however, a greater energy spread is usually used.

The experimental neutron-cross-section data indicate that there are large fluctuations

in the relationships of neutron cross section vs. energy, particularly in the low-energy
region and for lighter nuclides. We get the neutron cross sections which show these

large fluctuations or resonances. Certain general statements can be made concerning
the spacing of these rapid fluctuations in the neutron cross section of the typical
nuclides. The resonances in light nuclhides (A<30) and in certain special heavy
nuclides such as Bi. Pb, and Sn are few and widely spaced in the region below
1 MeV. The spacing, however, decreases very rapidly with increasing A, and for
A>65 the spacing is so small that the current data indicate only a continuous variation
of cross section with energy. We have already indicated that these resonances
associated with the excited states of the compound nucleus which are formed by

neutron capture.
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Apart fi
part form the resonances there appear to exist

Cross sections. Th LR
ns. The nuclear
Cross

‘ sections are sometimes given in terms oFEdelcer
areas, which are computed from

i : . The o(T, A) surface revea
that neighboring nuclides show o

milar variations with energy. but the sh of the
_ gy, but the shape
sectional curves changes gradually with A so that

nuclides differing greatly in A have
Cross-

Seclion curves which differ quite marke

surface is the fact
that the peak cross section, which occurs at low energies for the
heavy elements,

dly. An interesting feature of this

As a result of int i i 3
Cractions with atomic electrons, charged particles in passing through
the matter lose energy;

hence precise cross- section measurements for protons,
deuterons, alpha particles, etc., must be made with

relatively thin targets and must be
based upon : .
pon the detection of ejected or scattered particles rather than the minute

Intensity change upon transmission through the target. Accordingly, the experiment

leads directly to the partial cross section rather than the total cross section

When the residual nucleus of a reaction induced by charged particles is radioactive,
the convenient method of stacked foils is available for measuring the cross section as
a function of the incident particles. In this method the absorber is an assembly of thin
layers of a particular type of target material. After exposure to the beam these layers
are disassembled, and the disintegration rates of various layers are determined by
means of counters which are sensitive to the disintegration products of the radioactive
residuals. The intensity available at each layer may be assumed to be approximately
constant as long as the total target thickness is small compared to the mean range of
the particles in the target material. It can be shown on the basis of the laws of
radioactivity that the relative activities or disintegration rates at a given time atter the
bombardment are proportional to the original numbers of radivactive products formed
in each layer during the bombardment. Since the intensity is the same for each layer,
the activities, when plotted against the corresponding energies, give directly the
relative cross sections as a function of energy. With careful calibration of the various
components in these experiments, il is possible 1o obtain absolute cross sections by
the method as well. If several chemically separable types of radivactive residuals are

produced, partial cross sections for the different processes can also be established.
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Most experiments designed (o establish partial cross sections are based upon the

measurement of the intensity distribution of ejected or scattered particles from thin

targets as a functi acterized
ooy nction of the angles §, and pi. This distribution may be characterized by
unction o : i

a (61, p1), known as the differential cross section per unit solid angle which

is defined by

o1 (81,p1) AQ) = An/Ins (3.7)

AQy = sin 6; A Ap, (3.8)
is an element of solid angle and An is here the number of ejected or scattered particles
per unit time which go into AQ,. The solid-angle interval A, which is determined
by the sensitive area of detector and the distance of the detector from the target

according to
(3.9)

AQ), = area of window/ R’

must be small enough so that the change in oy(6,,p) is small over the range of angles
subtended by the detector window. Not only is the differential cross section per unit
solid angle a useful intermediate concept in the experimental determination of partial
cross sections, but in addition it has a direct physical significance in nuclear physics
which is becoming more and more important as nuclear physics develops. This
importance stems form the sensitivity of o) (B py ) to the nature of nuclear forces.
Thus the agreement between experimental and theoretical differential cross sections
per unit solid angle for all cnergies and all nuclei would provide a very convincing
“proof” of the theory which yields the theoretical function.
The theoretical analysis of collision phenomena is greatly simplified if we use the
center-of-mass coordinate system. In this system the total energy of the system, apart
is the total kinetic energy of the incident particle

from the constant initial rest energy.
ressed as

and the scatterer. The total kinetic energy may be exp
(3.10)

T=1/2 mr‘h’z = pzfzmr
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where

=K i e G.11)
and by definition

p=myv (3.12)

In effect we have transformed our two-body problem into an equivalent one-body
problem in which the center of mass serves as an infinitely heavy scattered particles

and the incident particle has the mass m, and velocity v. If the ejected particle is

different from the incident particle or has a different energy (i.c., if a nuclear reaction

or inelastic scattering occurs), the final system is equivalent to an infinitely heavy

scatterer and a particle with the mass

m'r=m'M'fM’ + oy (3.13)

and with the kinefic energy

T =Yam, vi=p 12m, (3.14)

where T is the kinetic energy of ejected particle.

In view of the independence of the different scatterers the ratio An / N;in Eq. (3-7) is
simply the number of particles per unit time scattered by a single scatterer into the
solid angle AC. Thus in the theoretical derivation of the differential cross section we
may pretend that there is only one scatterer in the beam. In order to define a
theoretical concept which corresponds to the experimental quantity defined by
Eq (3.7), we must use the basic connection between statistics and probability.
According to this connection, when dealing with ratios of large numbers of particles,
we may replace numbers of particles by probabilities for a single particle, or numbers
per unit time by probabilities per unit time. Consequently we may accept ftor the basic
definition of the theoretical cross section in the center-of-mass system

6(0,p) AQ = w/9 (3.15)
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where W represents the probability per unit time for scattering or transition fnko 56)

due to a single scattered particle and 8 represents the incident probablllty per unit area
per unit time.

Two integrated concepts follow directly from the theoretical cross section per unit
solid angle. These are

o(0) = f"u(e,cp}dm (3.16)

which relates to the probability per unit time of scattering between the cones defined

by 6 and @ + A 6, and the total cross section
o= [" [ o(3,y)sin 9)dedy 3.17)

which relates to the probability of scattering in any direction.

3.2 The Elastic Cross-Sections and Total Cross-Sections
It was shown that at moderate energies when the effects of the individual states of the

compound nucleus on the scattering are no longer resolved the cross-sections for the
elastic scattering of nucleons by nuclei vary rather smoothly with energy and from

one nucleus to the next [7].

Using this model, the expressions for the absorption and elastic cross-section for

neutrons incident on a nucleus of radius R can be expressed by

. :nRz[i—{(1+2KR}E_3kR}EZK2R2] (3.18)
R 3

o, =2n [l - exp(-K +2ik, )5 pdp (3.19)
L

where s* = R —p’. The absorption coefficient K is related to the nuclear parameters

by

K 43;"1 (3.20)
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where G is the mean cross-section for nuclear collisions.

o={Zo,a, +No,,a, }/A 3.21)

The coefficients Guy and o, allow for the reduction in the cross-section due to the

Pauli principle that occurs because some final states are already occupied.

The total absorption cross-section from the total measured flux, is

inn . .
g, =— S, T .
A Hzmvw o V)" Sin do dg. (3.22)
Now the wavefunction
2L +1 ;
b =*‘Z——P( : ) L (c0s8) (S e™ —e™) (3.23)
L 21kr
where
S, =e™ (3.24)
and hence
e
op =17 L LD -S.]%) (3.25)
L

The total cross-section is the sum of the total elastic cross-section o and total

absorption cross-section o4 , so that

o =%ZL:{2L+1)(1-ReSL) (3.26)

3.3 Resonance Theory for Nuclear Cross- Sections
For low-energy projectiles these fluctuations consist of high, narrow peaks which are

called resonances. At very low energies charged particles do not cause nuclear

reactions because of the large coulomb barrier, but resonance behaviour is observed in
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low energy neutron scattering from medium mass nuclei and in neutron capture, of

(n,y) reactions on heavy nuclei. These resonances are exceedingly sharp [12].

The formation of a resonance at particular incident energy may be associated with the
formation of a long-lived state of the compound system composed of the projectile

and the target.

Since the projectile carries kinetic energy the total energy of the compound system E
positive and the state of the system is a virtual or quasi-stationary state and not a tru¢
stationary state. This mean that the state of the compound system must eventually

decay with emission of the original particle, a different particle, or a y- ray.

The incident projectile was assumed to move in an attractive real potential so that the
quasi-stationary levels are the single particle levels in this potential with energy, and a
resonance will occur whenever the incident energy corresponds to the energy of one

of these single-particle levels. For a simple square well potential of depth Vo and

|
range R, the s-wave resonances occur when KR =(r1+5):rr: where

]{2 =2u(E + Vﬂ]fhz , and p-wave resonances occur when KR = nn.

For a given nucleus the spacing of these levels is about 10 MeV, depending on the

choice of potential parameters. If it is assumed that, for low energies, V; is

independent of mass number A while R« AI’Q , the positions of the resonances can
be located as functions of A for fixed incident energy. It is evident that this model
contains many of the features associated with giant resonances but apparently
contains none of the features associated with the fine resonances. If the fine
resonances are also to be associated with quasi-stationary levels, the levels must be

closely spaced levels of a many particle system and assume that many nucleons
participate in the formation of the compound system.
Resonance is important in nuclear reactions because knowledge of the resonance

energies in a reaction yields information about certain energy levels of the nucleus.

The concepts of cross-section and level width can be applied to resonances in a

qQuantitative way.



33

In the important case of resonance processes, a theoretical formula for the €ross”
section was derived by Breit and Wigner. The Breit and Wigner formulas give 2 good
description of the energy dependence for both the reaction cross-section and the

scattering cross-section in the vicinity of a single isolated resonance level.

The compound nucleus may be said to exist in a “quasi-stationary” state, which means
that although it exists for a time interval which is very long compared with the natural

nuclear time, it can still disintegrate by ejecting one or more nucleons. These quasi-
stationary states are called virtual states or virtual levels in contrast to bound states Of
bound levels, which can decay only by emitting y radiation. There are many possible

virtual levels of the compound nucleus. These levels are closely related to the
phenomenon of resonance.

The occurrence of a resonance peak in the rate of a nuclear reaction when the energy
of the incoming particles is varied shows that the compound nucleus has an energy

Jevel whose excitation energy is very nearly the sum of the binding energy of that

particle and its kinetic energy.

Each excited states of the compound nucleus, whether bound or virtual, has a certain
mean lifetime 1; there is a certain period of time, on the average, during which the

nucleus remains in a given excited state before decaying by emission of either a

particle or a y ray.

The study of resonance phenomena in nuclear reactions can now be seen to have great
¢ width and spacing of the energy

importance because it provides information about th

levels of the compound nucleus.

strong resonance maxima of neutron capture were found to be

In many cases, the
in the scattering cross-section. The important

unaccompanied by maxima
major revision in the resonance model which had

experimental fact dictated a
appeared to be satisfactory for the (a, p) resonance reactions. [t was necessary to
ow neutron and at the same time, to be

account for strong resonance capture of the sl
ry small probability for reemission of the neutron.

able to account for a ve
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Breit and Wigner showed that this could be accomplished if the compound level has a
higher probability of decay by other modes that by reemission of the neutron. The

compound nucleus thus corresponds to a damped oscillator, accepting the incident

neutron readily at its resonance energy, but dissipating this energy mainly by y ray

the compound nucleus, as in the (n, Y) reactions. This
model is often referred to as the dispersion theory of nuclear reactions because of its

transitions to lower levels of

parallelism with the theory of the dispersion of optical light. The compound nucleus

becomes, in this model, an intermediate state in which the excitation energy can be

shared by several nucleons and from which de-excitation can occur in a variety of

competing modes,
In low and intermediate energy, intermediate nuclei, the most important reactions

intermediate energy and nuclei of intermediate atomic

weight are elastic scattering (n, n) and radiative capture (n, y). The total cross section

between neutrons of low or

(o)) and the radiative capture cross section o (n, ¥) have been measured as functions
of the incident neutron energy. At neutron energies where there is no resonance, this
cross section represents the probability that the neutrons are scattered without the
formation of a compound nucleus. In this case, the nucleus acts like a hard sphere of

radius R, and it has been shown that for neutrons with energies up to about 1 MeV the

scattering cross section is

o, =4nR? (3.27)

This type of scattering is called potential scattering.

One part of the low energy, thermal energy region, has a special property in the case
of the (n, y) reaction. Although the Breit — Wigner formula is strictly valid only near a
resonance, it may be applied in the thermal energy region in the absence of a
resonance if it is assumed that the energy E, is the resonance energy nearest to the
thermal region. All of the factors in the Breit - Wigner formula are constant compared
with T, which is proportional to the neutron velocity v, and A, which is proportional
10 1/v. The (n ,y) reaction reduces to

o(n,y) = onstant (3.28)

v
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_and ‘the cross section for radiative capture is inversely proportional to the neutron
- ety . R

The only reactions possible for low—energy neutrons on heavy nuclei are,
exceptions, elastic scattering and

with a few

radiative capture. When the positive charge of the
aucleus is large, the effect of the Coulomb barrier prohibiting the emission of charged

particles of low energy is even greater than with intermediate nuclei. In reactions

between low-energy neutrons and heavy nuclei, the cross-sections often show

resonances very close together in energy.,

The level distances are often of the order of 10 to 100 eV and the excited states of the
compound nuclei in this region are usually close together. In heavy nuclei, the
resonances are mainly capture rather than Scattering resonances, and the neutron
width T, is small compared with the radiation widthT",. The total cross-section is
practically equal to the capture cross-section o (n ,y) near resonance: between
resonances, the total cross section is approximately equal to the potential scattering
cross section, 4nR%. At thermal energies, in the absence of resonances o (n,¥) follows

the 1/v law, as was the case with intermediate nuclei.

In the intermediate energy region, the reactions are similar in nature to those with
intermediate nuclei. Resonance scattering is more important than resonance capture
and I'y > T, The spacing between resonances, however, is smaller than for
intermediate nuclei. It is hard to explore the intermediate energy region because of
experimental difficulties with neutrons of these energies. Individual resonances

cannot be resolved and the experiments give information about cross sections

averaged over many resonances.

The Breit-Wigner formula is averaged over many resonance levels and applied to

(n,y) reactions at neutron energies of about 1 MeV , it is found that the averaged (n,y )

Cross section is given by
o(n,y) = (1*/2) (FT/D) o

where D i the leve| spacing,
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when the energy of the incident ncutron jg about 1 MeV or higher, new types of
processes can oceur, such as inelastic scattering and the emission of charged particles.
The emission of neutrons is more probable than that of charged particles because of
the Coulomb barrier. The emitted neutrons can leave the residyal nucleus in excited
states so that some of the scattering is inelastic rather than elastic. The cross sections
for the reactions in which charged particles are emitted are much smaller than those
for inelastic scattering and radiative capture, especially when the L Raclens hias &

high value of Z, because of the effect of the Coulomb barrier.

The scattering of neutrons with energies greater than 10 MeV has been used to
determine values of the nuclear radius. According to theory, the total cross section at

high energies approaches the value
o, =2nR* (3.30)

3.4 Continuum Theory of Nuclear Cross-Sections
At higher bombarding energies (1 to 30 MeV) the individual levels of the compound

nucleus become broader and also more closely spaced. The continuum theory of
nuclear cross section, which is applicable in this energy domain, is an average over

many resonances [12].

These theories can be represented by the expression

L] = - ]
Ogm =T D (2A+1)P, 2, 331
lal}
where P; denotes the probubility that an incident particle whose angular momentum
is { will reach the nuclear surfuce and 2 denotes the probability that the particle will

cater and remain in the nucleys,

In the continuum theories internal clastic scatering is explicitly excluded. Elastic
Scattering is proportional to C1-20 and s visualized in terms of an incident particle

which never merges with the target nueleus,

The continuum theories of nuclear reaction cross sections were undergoing major

TeVisions, in order to match systematic trends which had been found in neutron cross
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sections. That theory deals explicitly with neutron-induced reactions only. The energy

over individual fluctuations and
resonances, is expressed in terms of two Parameters of

dependence of nuclear cross sections, averaged
e

€ inner nuclear structure.
These are nuclear radius R and the wave number g of the

incident neutron after it is
in the interior of the compound nucleys,

The wave number K for neutron within the nucleus becomes K?= Kol + k2 where k is

the wave number of the incident he nucleus and K, is the

neutron as it approaches t

interior wave number K if the bombarding energy is zero.

At large energies, where X =1/k << R » the theoretica] abso

sections for neutrons are both found to approach the same asymptotic value

O =0, =T(R +X)? (3.32)

Therefore the total cross section, for high - €Nergy neutrons, becomes

O, =0, +0, =2m(Rt + X)? (3.33)

The elastic scattering referred to here is purely potential scattering, as interna] or

resonance elastic scattering is usually explicitly excluded in continuum theories of
nuclear cross sections.

3.5 Resonance Reactions and

Fluctuating Cross-Sections
Cross section for formation of

the compound nucleus
times the prob
barrier and the nuclear surface by a parti

can be represented as the
ability for transmission through the nuclear
clea,w

maximum Cross seclion

ith orbital angular momentum /.

Potential revergeg the phase of the Outgoing (¢ ) portion of the total (partial) wave,

Th i : , —
€ Maximyp, Possible elastic Statlering cross section js

(o P (2] + s

(3.34)

When there ig some absorption, the absolute value of the amplitude of the outgoing

(e ) portion of the total wave is reduced.
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In the limiting case of maximum absorption, the amplitude of the outgoing (")
portion of the total wave is reduced to zero. This is one-half of the change in

amplitude involved for maximum scattering. The maximum absorption Cross section
which depends on the difference between the square of the ingoing (e™) amplitude

1 kr . i .
and the outgoing (™) amplitude, is one fourth of the scattering equation, or

(O s Vi =T (21 +1)22 (3.35)

For the important special case of slow neutrons, which can involve only s-wave

- _ ; . . _ _ :
collisions (£ = 0), the maximum possible reaction cross section becomes simply m©*’,

and therefore it can be enormously larger than the geometrical cross section of the

target nucleus.

The elastic scattering cross-section is given by the absolute square of the scattering

amplitude
f(6) = —1 > (2L +1)(e*™ ~1) P, (cos8) (3.36)
2ik <

and so if a resonance occurs in a particular partial wave it is given by the variation of

the appropriate phase shift &, with energy. At the resonance energy E, the

cross-section has a maximum value. The energy variation of the phase shift is

5=-§——(ER —E}gg (3.37)
The value of dig determines the sharpness of the resonance.
A width I is
= 2(E)" (3.38)
dE

the total elastic cross-section becomes
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n 2
of =5 (L +1) r (3.39)
(E; -E)? +% 2

This is the Breit-Wigner formula for the cross-section of a single isolated resonance in

the elastic channel when al] other channels are closed.

At low energies and for light nuclei the resonances are well separated and the
scattering can be analysed to give the energies and widths of the corresponding states
in the compound nucleus. For low energy neutrons only s-waves contribute to the
scattering and so the radial wave equation outside the nucleus becomes

d*u

2

+k2U={} i (T:P’R} {340}

So that

U(r) = A sin(kr +8,) (3.41)

.. RU
The nucleus gives TR f(R) atr =R and continuity then requires

f(R)=kR cot(kR +8,) (3.42)
and the elastic scattering cross-section for s- wave is

(3.43)

'?[ 2
8, =y flva™
At low energies the wave function is very small inside the nucleus so I — oo and

_ T -2k |? 7
Gﬁa»F‘I—e . E->0 (3.44)

Singe kR<<] this becomes

o, = %Pikﬂlz =47R?}, (E—0) (3.45)
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As the phase shift 8, varies with energy, the function f(R) passes through zero when
n
kR + 5,:,. - E.

At a bombarding energy E, which is in the neighborhood of a resonance Er, the shape
of the resonance by a function f(E) is given by

s
(3.46)
(E-E;)* + (g)2

f(E) =

We can expand f(E) about the resonance energy as

f(E) = (E-E, )(%)E_E_ " (347)
Then the scattering cross-section is
2
o, = % 1-e™™* - = (3.48)

{E-En}+-%i1"

The partial width for re-emission of the incident neutron through channel o as

2k (3.49)

r, ==,

% a
the total width as

r=2(b+kR)/a ,

and the reaction width as

i 51
rrzzrﬁzr—rqr;:h‘}—. (3 )
faa

Thus the scattering cross-section becomes
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: 2
o =-ll-e’“- ZIkR/a ' (3'52)
Sl - {E-E,)+i{b+m},fa|

=

. Thus the scattering amplitude consists of g non-resonant part.

1

—(e™ ~) (3.53)

A = ok

which is the amplitude for potential or shape-elastic scattering. The resonant part is

A =_L[_ 2ikR/a ] (3.54)

2ik (E-—En)+i(b+kR};’ a
which represents the scattering arising

from re-emission of the absorbed neutron by

the compound nucleus or compound-elastic scattering. The cross-section for
compound elastic scattering becomes

IS 1.
cea kl 3 l .
(E_EI} +{§r)

(3.55)

which is the Breit - Wigner formula for 1=0 and the absorption cross-section becomes

T ILE,

O =13 | (3.56)
(E-E,)’ +(ST)’

The cross-section for compound nucleus formation is

ET.

..._ m
Utn{a} o4 Gllh + Gtr.u = i__z

I (3.57)
(E=E_ ¥ +{,', )
and the cross-seetion for the process a - 3 is
B
Ta =yt (3.58)

)
(E-E,) +{_’,-r)-‘
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These formulas are the i : Wigne
the one-level dispersion formulae introduced by Breit and Wigner.
At low energies and far from

S Tesonance the scattering cross-section is 4mR’. Near
resonance the i i
Potential scattering interferes 1o give the cross-section for compound
nucleus formation reduces to 4xT fxiT
[+ 4 L]

e &
If there 1s only one decay channel apart from the elastic channel, and its width is

large, the resonant cross-secti ;
£ { cross-section takes a particularly simple form. Thus for neutron
capture or (n,y) reactions L, »T

, 50 that at resonance

4n T

e n

k*T

b

]

(3.59

At higher energies the level density in the compound nucleus increases very rapidly,
until the average level width exceeds the level spacing, and then the individual levels
are no longer resolved. At still higher energies the fluctuations in the cross-section
crowd more and more c_hs;:ly together until finally they are no longer resolved

experimentally and the cross-section appears to vary smoothly with energy. The 5

matrix element is expressed as a sum of an averaged value that varies smoothly with
energy and a fluctuating component.

s=<S>+8§

where the notation, < >, indicates energy averaging over an interval sufficiently large
to smooth out the fluctuations and yet still small compared with the energy uself. The

energy-averaged matrix ¢lement < S > is the one calculated from the optical model

and the fluctuating matrix element is expressible as the sum of the

Breit-Wigner
amplitudes corresponding to each state in the compound nucleus. The measured cross-

section is the sum of the direct and compound nucleus cross-sections

s} {3.60)
40 dQ2

The direct interaction cross-section can be calculated for elastic scattering by the

optical mode! and the compound nucleus cross-section may be calculated by the

statistical theory.



CHAPTER 4
RESULTS
ol Introduction = AND DISCUSSION
In this work it has been ay i
optical model of the n:::mPled s ]_:’"“E into focus the role physical pictures play in
eus by using the IAEA nuclear code 'SCAT 2' formally

acquired under Com "
Putational Nuclear Physics programme of the IAEA TC project

Mya/01/013 Appli
F pplied Nuclear Physics and Nuclear Instrumentation

These sources w
5.0 and abo et checked and found 1o be compatible with Microsoft FORTRAN
: ve, and have been compiled SCAT 2 for (14].

:;r:::'r :::; :;;:?;:E::altl:::a:lt cross-section dependence on target mass

. -Li-7, 6-C-12, 12-Mg-24, 17-CI1-36. 20-Ca-40,
22-Ti-48, 26-Fe-56, 30-Zn-64, 32-Ge-72, 38-Sr-84, 42-Mo-96, 48-Cd-108.
50-Sn-120, 54-Xe-132, 60-Nd-144, 64-Gd-160, 72-Hf-180, 81-T1-200, 90-Th-232 and
92-U-238, using SCAT2 and compare the results with those given in ENDF V1. We
chose the targets to be light ones, intermediates ones and heavy ones so that the code
may be valid for all kinds of nuclides. We sec the results are quite the same and

SCAT2 is found to be an efficient tool in studying nuclear cross-sections.

4.2 The Cross-sections Defined in SCAT2 Code

The calculation of cross-scction is made on Transmission coefficients [9]. which are

defined as
T, =]‘é"le15: (+.1)
and the scattering phase shift oy is related 10 My a1y = exp,2i dy).
Thus the total cross-section IS
(+.2)

& {TEL {« +1)[1-R[n;]]+t[l~liln.')]}

1=41
f

The elastic cross-section IS
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T[ oy
oy =k—2§[(f+ljl—n;|z+f[l-n; r]] (4.3)

the reaction cross-section is

Op = f‘i[(f-‘* T; + 617

=0 (4.4)

4.3 Calculation Procedure

As the SCAT2 run under DOS, we have o load the DOS. After loading DOS, we

have to load the SCAT2 program. Under SCAT?2 program we open INPUT DAT and
make some changes to input data file (8].

C:A>SCAT2>EDIT INPUT.

The file is safe and closed. The calculation is done when we type this command.

C:\>SCAT2>SCAT2.

To see and edit output results, we open SCAT?2 and rename it.
C:\>SCAT2>EDIT OUTPUT.

4.4 Results and Discussion
The elastic cross-sections dependence of target mass number at 0.0001 MeV is given

in table 4.1 and fig (4.1). From the graph we can see the cross-sections are high at

about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.0002 MeV is given
in table 4.2 and fig (4.2). From the graph we can see the cross-sections are high at

about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.0003 MeV is given
in table 4.3 and fig (4.3). From the graph we can sec the cross-sections are high at
about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of targel mass number at 0.0004 MeV is given
in table 4.4 and fig (4.4). From the graph we can sec the cross-seclions are high at

about mass numbers 12, 50 and 160.



45

The elastic cross-sections dependence of target mass number at 0.0005 MeV is given
in table 4.3 and fig (4.5). From the graph we can see the cross-sections are high at
about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.0006 MeV is given
in table 4.6 and fig (4.6). From the graph we can see the cross-sections are high at
about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.0007 MeV is given
in table 4.7 and fig (4.7). From the graph we can see the cross-sections are high at

about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.0008 MeV is given
in table 4.8 and fig (4.8). From the graph we can see the cross-sections are high at

about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.0009 MeV is given
in table 4.9 and fig (4.9). From the graph we can see the cross-sections are high at

about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.0010 MeV is given
in table 4.10 and fig (4.10). From the graph we can see the cross-sections are high at

about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.005 MeV is given in
table 4.11 and fig (4.11). From the graph we can see the cross-sections are high at
about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.045 MeV is given in
table 4.12 and fig (4.12). From the graph we can see the cross-sections are high at
about mass numbers 12, 50 and 160.

The elastic cross-sections dependence of target mass number at 0.085 MeV is given in
table 4.13 and fig (4.13). From the graph we can see the cross-sections seem to
increase with mass numbers.

The elastic cross-sections dependence of target mass number at 0.125 MeV is given in
table 4.14 and fig (4.14). From the graph we can see the cross-sections seem to

Increase with mass numbers.
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The elastic cross-sections dependence of larget mass number at 0.165 McV

(able 4.15 and fig (4.15). From the graph we can sce (he G

increase with mass numbers,

IS given in

The elstic 708y SECHONS depefideticc: 6f larget mass number at 0,205 McV
able 4.16 and fig (4.16). From the

is given in
graph we can see the cross-sections seem to

increase with mass numbers,

The elastic cross-sections dependence of target mass number at 0.245 MeV is given in

able 4.17 and fig (4.17). From the graph we can see the cross-sections seem to
increase with mass numbers.

The elastic cross-sections dependence of target mass number at 0.285 MeV is given in

table 4.18 and fig (4.18). From the graph we can sce the cross-sections seem to
increase with mass numbers,

The elastic cross-sections dependence of target mass number at 0.325 MeV is given in
table 4.19 and fig (4.19). From the graph we can sce the cross-sections scem 1o

jncrease with mass numbers.

The elastic cross-sections dependence of target mass number at 0.365 MeV is given in
table 4.20 and fig (4.20). From the graph we can see the cross-sections seem to

increase with mass numbers.

The elastic cross-sections dependence of target mass number at 0.4035 McV is given in
table 4.21 and fig (4.21). From the graph we can see the cross-sections seem Lo

increase with mass numbers.
The elastic cross-sections dependence of target mass number at 0.445 MeV is given in
table 4.22 and fig (4.22). From the graph we can see the cross-sections seem to
increase with mass numbers.
The elastic cross-sections dependence of target mass number at 0485 MeV is given in
lable 4.23 and fig (4.23). From the graph we can see the cross-sections seem o
herease with mass numbers.
The clagtic cross-sections dependence of target mass number at | MeV is given in
ble 424 and fig (4.24). From the graph we can see the cross-sections seem (o

nerease with mass numbers.
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The elastic cross-sections dependence of target mass number at 2 MeV is given in
(able 425 and fig (4.25). From the graph we can see the cross-sections seem to

increase with mass numbers.

The elastic cross-sections dependence of target mass number at 3 MeV is given in
rable 4.26 and fig (4.26). From the graph we can see the cross-sections seem to

ncrease with mass numbers.

The elastic cross-sections dependence of target mass number at 4 MeV is given in
able 4.27 and fig (4.27). From the graph we can see the cross-sections seem to

increase with mass numbers.

The elastic cross-sections dependence of target mass number at 5 MeV is given in
wable 4.28 and fig (4.28). From the graph we can see the cross-sections increase with
mass numbers.

The elastic cross-sections dependence of target mass number at 6 MeV is given in
table 4.29 and fig (4.29). From the graph we can see the cross-sections increase with
mass numbers.

The elastic cross-sections dependence of target mass number at 7 MeV is given in
table 4.30 and fig (4.30). From the graph we can see the cross-sections increase with
mass numbers.

The elastic cross-sections dependence of target mass number at 8 MeV is given in
table 4.31 and fig (4.31). From the graph we can see the cross-sections increase with
mass numbers.

The elastic cross-sections dependence of target mass number at 9 MeV is given in
table 4.32 and fig (4.32). From the graph we can see the cross-sections increase with

mass numbers.

The elastic cross-sections dependence of target mass number at 10 MeV is given in

table 4.33 and fig (4.33). From the graph we can see the cross-sections increase with
Mass numbers.

The comparison of elastic cross-sections obtained by SCAT2 and those given in

ENDF file [14] are shown in table (4.34), table (4.35), fig (4.34) and fig (4.35), and

We find the results are quite the same.
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Table (4.1) Elastic Scattering CS at 0.0001 MeV for Various Targets

@ A (amu)|Elastic CS(B)
> Li 7 0.5734
oC 12 5.0842
12-Mg 24 2.6477
Exel 36 1.6620
50-Ca 40 | 5672
32.Ti 48 4.6380
26-Fe 56 8 4795
30-Zn 64 7.7082
32-Ge 72 68154
38-Sr 84 5.9588
12-Mo 96 5.3429
18-Cd 108 47574
20-Sn 120 4.1284
34-Xe 132 3.6680
60-Nd 144 48732
64-Gd 160 11.4453
72-Hf 180 12.4267
81-Tl 200 112840
90-Th 232 9 8032
92-U 238 9.6191

ELslic Scattering Cross=sections at ODDL MeY for Various Target
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Fig (4 1) Iastic Seatterine CS depeadance of Mass Number at 0 0001 MeV
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49

ttering CS at 0.0002 MeV for Various Targets

sections at 0,0002 MeV for Various Target

Table
/  (amu) |Elastic CS(B)
e 7 0.5715
B 12 5.0562
jic//*—’”'”ii 2.6441
12-M 36 1.6585
e 1.5619
0-C2— 48 4.5992
11— 56 84215
3‘:%" 64 7.6795
:’:‘i-'-ff;e"" e 6.7989
11;5-;7"' 84 5.049
% 53353
-3-3-;-{5‘3”" 108 4.7504
Sﬂ_—--g;‘" 120 4.1202
xe | 132 3.6557
aNd | 14 48413
Gl | 160 11.3461
=) 180 12.3724
81-TI 200 11.1004
50-Th 232 9.7916
92-U 238 9.6043
i Elastic Scattering Cross-
£ 120
"g 10.0
i 8.0
g 60|
b
£ 4.0
3
2.0

Fi ;
ig (4.2) Elastic Scattering CS dependance of Mass Number at

RV

e Elastic CS(B)

(0

50

100

200 250

Muss Number (amu)

0.0002 MeV
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Tablﬁ{"'s} Elastic Sﬂﬂttﬁﬁng-cs at 04““03 MEV l'u'i‘:\f'ﬂriuuf"[,‘a‘r'gé{i

Target_ A (amu) |Elastic CS(B)
L 7 0.5701
ﬁ;g____ 12 5.0347
0-Ca 40 1.5579)
2T 48 4.5697
26-Fe 56 8.3771]
30-Zn 64 7.6573]
;_2;[_;: 2 6.7861]
38-Sr 84 5.9414)
42-Mo 96 5.3294)
18.Cd 108 4.7449]
50-Sn 120 4.1139]
54-Xe 132 3.6462
60-Nd 144 4.8169)
64-Gd 160 11.2706
72-Hf 180 12,3305
§1-TI 200 11.0786
90-Th 232 9.7792
92-U 238 9.5926
Elns;ic Scattering Cross-sections at 0.0003 MeV for Yarious Tarpet
14.0 =

Elastic Scattering Cross-section (b)

12.0

10.0

8.0

6.0

4.0

2.0

0.0

| —®— Elastic CS(B).

i 50 100 I 50 2000 250

Muass Mumber (amu)

Fig (4.3) Elastic Scattering CS dependance of Mass Number at 0.0003 MeV



able (4.4) Elastic Scattering CS at 0.0004 MeV for Various Targets

e A (amu)|Elastic CS(B)
L 05688
3’*5""" 12 5.0167
%:‘ﬁ"’ 24 2639
:—;.cl 36 16535
30-Ca__| 40 1.5545
22-Ti 48 4545
26-Fe 56 8.3398
30-Zn 64 7.6386
32-Ge 72 6.7753
38-Sr 34 5.9349
42-Mo 96 5.3244
48-Cd 108 4.7402
50-Sn 120 4.1086
54-Xe 132 3.6382
60-Nd 144 4.7963
64-Gd 160 11.2072
72-Hf 180 12.295
81-Tl 200 11.06
90-Th 232 9 7686
92-U 238 9 5826

Elastic Svattering Cross-sections at 0.0004 MeV for Various Target

140 ¢

b-d

AYRY

8.0

()

Elastic Scattering Cross-section (b)

—e—Elastic CS(B)

y

50 100

200 250

Mass Number (amu) i.

Fig (4.4) Elastic Scattering CS dependance of Mass Number at 0.0004 MeV
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(4.5) Elastic Scattering CS at 0,0005 MeV for Various Targets

Tﬂblﬂ

,,.'-—;t'“"';_{amu) Elastic CS(B)
L 0.5677
UL 5.0000
ﬁ‘%l-“*”‘_ 24 2.6369
:::(:1 36 16515
oCa_| 40 1.5516
o 48 45233
oFe | 56 83071
AP 64 7.622
e 72 6.7658
e 84 5.929
Mo 96 5.32
5.Cd 108 4.736
Iy 120 4.1039
A Xe 132 36312
S0-Nd 144 4.7788
64-Gd 160 11.1515
CET 180 12.2637
81-TI 200 11.0435
90-Th 232 9.7591
92-1U 238 9.5737

Elastic Scattering Cross-sections at 0.0005 MeV for Yarious Target
—8— Elastic CS(H)
il
12.0
10.0

8.0

Elastic Scattering Cross-section (b)

B i o s

(0 50) 100 150 200 250

Mass Mumber (wmu)

F:
g [45) E]as[ic SCattering CS depﬁﬂdﬂﬂﬂﬂ of Mass Number at 0.0005 MeV
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T,ll:rli‘ (4.0) Elastic Scattering CS at 0.0006 Mevy for Various Targets

[Elastic CS(B)

Fig

Elastic Scottering Cross-sections at U006 MeY for Various Taruel
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fug 7 0.5667
L 12 4.9866
#C—T 24 2.635
ﬁ{ 36 1.6497
A1 40 | 5489
[ T, 4.5038
e e AT 82776
Pl 7.607
e S 6.757
Pt ——a 59238
T % 53159
f——{;,"“ 108 4.7323
%—E-g;"' 120 4.0996
axe | 132 3.6248
~Nd 144 4.7621
E{'ﬁﬁ“ 160 11.1014
il 180 12.2352
STl 200 11.0284
90-Th 232 9 7504
U 238 9.5655
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Table (4.7) Elastic Scattering Cg at 0.0007 MeV for Various Targets

Target |A (amu)|Elastic CS(B)]
3-Li 7 0.5658
6.C 12 4.9735
12-Mg 24 2.6333
17-Cl 36 1.648
20-Ca 40 1.5464
22-Ti 48 4.486
26-Fe 56 8.2505]
30-Zn 64 7.5932
32-Ge i 6.949]
38-Sr 84 59189
42-Mo 96 53122
48-Cd 108 4.7288
50-Sn 120 4.0957]
54-Xe 132 3.6189
60-Nd 144 4747
64-Gd 160 11.0555]
72-Hf 180 12,2089
81-Tl 200 11.0145
90-Th 232 97423
92-U 238 9.5579

Elastic Scattering Cross

=sections at 0.0007 MeV for Various

Tarpet

—c—-lhsuuun
12.0 |
10.0 |;
8.0 { |
6.0

4.0

Elastic Scattering Cross-sectian (b}

2.0

0.0 L—-——

0 50 100 150 200 250

]
-

Muss Number {imu)

Fig (4.7) Elastic Scattering CS dependance of Mass Number at 0.0007 MeV



55

49) Elastic Scattering CS at 0.0008 MeV for Various Targets

1abl°

T amu Elastic CS(B)
ﬂ.ﬁgtm 7 0.5649
;_y/.-#—-"lz 4.9614
E.'C/,/ 24 2.6317
M 36 1 6464
l/?ﬁ!,# 40 1.544]
;l;_Ef.‘.f a8 4.4694
s T 8.2254
6P 64 7.5803
L 6.7415
6t ——2 5.9144
é’i’%{;—*"“_ga 53087
ﬁ'—Er“'"Tas 4.7256
::,{-S-r'"'_ 120 4.092
g&"ﬂ'__ : 132 3.6135
W | 144 4.7338
eiGd | 160 11.0129
HT 180 12.1844
TR 200 11.0014
90Th 232 9.7347
U 238 9.5507

Elastic Scattering Cross-sections at 0.0008 McV for Various Tarpet

_—._'—_El.jr'.tu: CSi

12,0

1

1.0

8.0

G.0)

4.0

Elastic Scattering Cross-section (h)

20 |

3 L T o

0 S L 10 L 30 200 250

Mass Nomber (amu)

Fig S
'8 14.8) Llastic Scattering C$ dependance of Mass Number at 0. 0008 MeV
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Table (4.9) Elastic Scattering C8 at 0.0809 McV for Various Targets
" A (amu) | Elastic CS(B)
i s 0.5642
e T 4.95
E.‘%r" 24 2.6301
.‘/1'155" BEE | 6449
ﬁ-é;"' 40 1.5419
E-E;:ﬁ"“ [ 48 4.454
L_Fc 56 82018
Zn | 64 7.5682
12.Ge 72 6.7344
Wsr | 84 59101
Mo | 96 5.3054
18.Cd 108 4.7225
S0-Sn 120 4.0585
Zd-X¢ 132 3.6083
60-Nd 144 4.7203
64-Gd 160 10.973
22-Hf 180 12,1613
R 200 10.989
90-Th 232 9.7275
92-U 238 9.5439
Elastic Seattering Cross-sections at U000 MeV for Various Turget
T L ...._.;;.l__:_]_u_mu L-\HH’
12.0

Elastic Scattering Cross-scetion (h)

Ilg (4 (,]'} :lastic S'Cillli:l'lll'l}_l N Lh:l-mndm“_‘u ol Mass INLH

. 3 150
i S0 | LMD 15U 3 -3

Alaas MNunbar (amin)

ber at 0 U009 Mel
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Table (4-10) Elastic Scattering CS at 0.001 MeV for Various Targets

Eaamu} Elastic CS(B)
; 7 0.5634
2:-(1:1'-—-‘ 12 4.9392
-ﬁl-'i;ﬁ"‘ - 24 2.6287
70| 36 1.6436
30.Ca 40 1.5399
2T 48 4.4394
26Fe 56 8 1795
30.Zn 64 7.5567
$2.Ge 72 6.7277
38-Sr 84 5.906
42-Mo 96 5.3022
[48-Cd " 108 4.7196
50-Sn 120 4.0852
54-Xe 152 3.6035
60-Nd 144 4.708
64-Gd 160 10.9354
72-Hf 180 12.1395
81-TI 200 10,9772
90-Th 232 9 7206
92-U 238 95374

Elastic Scattering Cross-sections at 0.001 MeV for Various Target

Y P

| [ ) e
; + Elastie L S8y

8.0
6.0

4.0

Elastic Scattering Cross-scction (b)

2.0

0.0 i

|
1
‘ T T T T |

4 50 100 150 200 250 |
|

o TP Mass Numhcr[amu}l
- sz . |

Fig (4
10) Elgsnc Scattering CS dependance of Mass Number at 0.001 MeV
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Table (4.11) Elastic Scattering CS at 0.005 MeV for Various Targets
ﬂ .

_,_,.-‘-c'l"" A (amu) Elastic CS(B)
Targ=— 7 0.5454
1‘%‘*—"“ 12 26857
e 24 25927
l%'ﬁg" 36 1.6092
- “Ca 20 1 4908
%—;ﬁ"‘ T 48 4.1025
ﬁ"' 56 7.6567
SoZn | o 7.2760
mGe | 12 6.6590
Sesr | . 84 5.8012
Mo _ 96 52215
48-Cd 108 46459
Sosn | - 120 4.0039
ag-X¢ 132 3.4864
60-Nd 144 4 4192
64-Gd 160 10.0600
72.Hf 180 11.5989
31-TI 200 10.6739
[90-Th 232 9.5379
@ 238 9.3652
Elastic Scattering Crovs-syections ot 0,005 MeV for Various Target
E 120
g
£ 100
E g0 |
L]
g ; J.
T O i
% 4.0 |
2 20 5
...... -
[y i) -
| 511 1) | 50 200 250

Muss Mumiher (amu)

Fig (4.11) Llastic Scattering CS dependance ol Mass Number at 0 005 MeV
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12) Elastic Scattering CS at 0.045 MeV for Various Targets

Tnblﬁ (4.

_——TA (amu)|Elastic CS(B)
TarEe +—— 0.4816
Ll _——3 38578
E‘%{-“"”__@q 2.4525
:ﬁ:ﬂ 36 14951
20Ca |40 13256
T | 48 3.0883
6Fe | 56 5.9703
30-Zn 64 6.2171
52.Ge 72 5861
81 84 5.346
Mo | . 96 4.9052
18.Cd 108 43848
50-Sn 120 3.726
54-Xe 132 3.1006
60-Nd 144 3.5076
64-Gd 160 7.3609
72-Hf 180 9 5209
81-Tl 200 9 3235
90-Th 232 8 6941
92-U 238 8.5977

Elistic Suattering Cruss-sections at 0,045 MeV for Varivus Target

100 e R S S LT ; _.__El_ilslh: (:HI.B]

9.0
80
70
6O
50
4.0
30

2.4

|
|
|
|
|

Elastic Scattering Cross-scction (h)

1.0

(1.0

J 50 100 150 200 250 '

Mass Number (umu)

Fip
'8 (4.12) Elastic Scattering CS dependance of Mass Number at 0.045 MeV
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ple (4- i3) Elastic Scattering CS at 0.085 MeV for Various Targets
Th

Elmstic Scattering Cross-section ()

fig(y

ﬁm@ﬂstic CS(B)
Eggﬁ/—-*'”"f 3 0 4482
W3] 3 4508
o-C 24 23778
ﬁfﬁf-*"fqg 1 4466
-G —+—qo] 12509
p0-L8 5 2 6391
It — 51607
2wkt +— 56189
W 5 4296
36— 50651
W 17699
Mo | — =

wCd | 108 4 3052
oo | 120 36343
;.1-1'-0: s 132 2 955
SN 144 31204
1.Gd 160 61574
T 180 8 3609
T 200 8,461
90-Th 232 81938
02U 238 $ 1863

Elastic Scattering Cross-sections at 00535 MoV for Various Ta ruct
g sl U513
80 '

T4

ol

S0
ey
o
i
2o
:
Fiy ¢
|
i il _
1} 5 : 5 e
o e 50 2 A0
Mass Number (amu)

30 Ly . . .
) Elastie Scattering C8 dependance of Mass Number at 0 085 MeV
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14) glastic Scattering CS at 0.125 MeV for Various Targets

gable R

Elastic CS(B)
/’JA;“J@-}}; 0.4239
25&/, —"12 3.1597
#‘f”/ﬁ 2.3287
aME— 36| 14228
1-Cl j 1.2069
0.Ca a3 23414
@ 36 4.59:@;
16- 64 516
@H’”“—E— 5.0844
30854 4.8483
38-5 — 9% 47073
MO 5% 4296
#Cd—5 3.6134
il%'*" 132 2 8946
54"”; 144 28939
62{-&‘&"‘ 160 5.3706
%;ﬁ'r”‘ 180 7.501
o | 200 7.7731
90-Th 232 7.8253
92U 238 7.9072

Elastic Scattering Cross-sections at (L1253 MeV for Various Tarpet
g o=l Ll CRU B

B.0

7.0
v ()
5.0

Elastic Seattering Cross-section {b)

0 S0 L) 130 200 230

Mass M ber (amu)

Fi
814 14) Elastic Scattering CS dependance ot Mass Number at 0 125 MeV
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(4.15) Elastic Scattering CS at 0.165 MeV for Various Targets

T,hle

~ (amu)|Elastic CS(B
O Y
3L — 1] 293
¢C —""x 2.296]
Mg ——¢ 1.414]
-4 1.1812
39-‘-%‘-‘“"’_ 48 2.1225
531%-:-;-*”_ 56 4.1587
;g:z“ e 4.7872
Ge | 12 4.7904
S | 8 4.6709
i-z-;ﬁ;" % 4.6819
1s.cd | 108 4.3209
50-Sn 120 3.6302
GiXe 132 28814
“0-Nd 144 2.7552
.G 160 4.8045
T2-Hf - 180 6.8174
S1T1 200 7.1941
90-Th 232 75264
92U 38 7.6888

Elastic Scattering Cross-sections at 0.165 MeV for Various Target

-

=4 Dol Ao
o o o

[—e—Elastic CS(B) |

:5\
=
!

=

B L e
= o

—
p—

Elastic Scattering Cross-scction (b)

—

0.0

Y 50 100 150 200 250

Muass Number (umu)

Fig (4.15) Elastic Scattering CS dependance of Mass Number at 0. 165 MeV
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(4.16) Elastic Scattering CS at 0.205 MeV for Various Targets

-n:ﬂle

/,./"‘ A (#mu Elastic CS(B)
lgsfit 7 0.3898
= 12 2.7395
:{E;*“"Ea 2.2752
11:{:i R T 1.4156
17 40 1.1677
j:',:‘:f——*"“" 48 1.9535
56 3.8057
16 Ee 52 4.467
L 7 45323
e —g2 45204
Ei'%,;’"” 96 4.6743
fiﬁg“‘ 108 4361
5—-:'_3;""' 120 3.6674
E—-g;"“ T 42 2.8967
tas 144 2.672
60-Nd

ﬁ“';d 160 4.3788
ool | 180 6.2556
=T 200 6.6943
31-Tl ,

90-Th 232 7.2662
.U 238 7.497

Elastic Scattering Cross-sections at 0.205 MeV for Various Target

o Fiasic CSB)

I e i &—Lla

1
i
- ]|
!
i
H
1

[Ekistic Seatiering Cross=weetinn (1)

0 50 100 150 200

| Miss Mamber (anm)

. o v
H&iq'm} Elastic Scaitering CS dependance of Mass Number at 0.205 Me



64

rable (4.17) Elnstic Scattering CS at 0.245 MeV for Various Targets

_—"[A (amu)|Elastic CS(B)
Ly 03774
33 2.5766
f:-%[-“" 24 2.2629
BZE]E""_ 36 14241
lz:af‘" 40 1.1631
E-gi-ﬁ“" 48 1.8191]
%fﬁ:'g;"” 56 3.5117
~0.Zn 64 4.1879
32-Ge 72 43018
38-Sr 84 4.389
22-Mo 96 4.6732
48-Cd 108 4.4058
50-Sn 120 3.715
54-Xe 132 2.9297
60-Nd 144 2.6265
64-Gd 160 4.051
72-Hf 180 5.785
81-TI 200 6.2561
90-Th 232 7.0278
92-U 238 7.3149

Elastic Scattering Cross-sections at 0,245 MeV for Various Target

8.0

Gt

?L‘J;

Elastic Scattering Cross-section (b)
i 5

) |

—e— Elastic CS(B)

30 [LRLY

150 200 250

Mass Number {amu) |

= —

g (4 I7) Elastic Scattering CS dependance of Mass Number at 0.245 MeV
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rable (4.18) Elastic Scattering CS at 0.285 MeV for Various Targets

A (amu)|Elastic CS(B)
TaE——— 7 0.3671
L 2.4345
6C—1—23 2.2567
”'E[[ === 5 14376
l'ta"“ 40 1.165
Eﬂlﬁ"’ 48 1.7103
%ﬁ;"‘ 56 3.2019
’i'ﬁ':'z'ﬁ'_- 64 3.9412
32.Ge 12 4.0934
38.57 84 42715
Mo 96 4672
48-Cd 108 4.4495
50-Sn 120 3.767
54-Xe 132 2.9734
60-Nd 144 2.6078
(64-Gd 160 3.7959
72-Hf 180 5.3863
$1-Tl 200 5.8685
90-Th 232 6.8024
92-U 238 7.1347

Elastic Seattering Cross-sections at 0.285 MeV for Yarious Target

By - e L I _—_.._— F_‘.I-ﬂ:ﬁ“'.- CS{B-}: I

7.0
6.0

50

Elastic Scattering Cross-section (b)
i

oo Lo 1 1 .
U 50 100 150 200 250 '

Muss Number (amu)

Fig (4.18) Elastic Scattering CS dependance of Mass Number at 0.285 MeV
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(4 ly}Elasti: Scattering CS at 0.325 MeV for Various Targets

Tﬂhlﬂ

3 (amu) | Elastic CS(B)
ﬁ:ﬁﬂ* ; 0.3586
FL——— 2.3086
6C_——74 2.2548
B:ﬂg"’_'___ﬁ 1.4545
0 1.1718
Iﬂ“gf 48 16213
Ii:Fe 56 3.0967
-:"-ﬂ-_-z-;'* - 64 3.7208
;_Ge 7 3.9034
38-Sr B4 41641
12-Mo 96 4.6672
scd | - 108 4 4886
20-Sn 120 3.8193
5a-Xe 132 3.0235
60-Nd 144 2.6088
64-Gd 160 3.5968
72-Hf 180 5.046
81-Tl 200 5.5233
90-Th 232 6.5854
52-U 238 6.9534

Elastic Scattering Cross-sections at 0.325 MeV for Various Torget

8.0 , —e—Elastic CS(B)

1.0

6.0
50 1

4.0

30
2.0

Elastic Scattering Cross-section {b)

1O -

0.0

: ; : i
0 50 100 150 200 250 |

s Mass Mumber (amu)

Fi
8(4.19) Elastic Scattering CS dependance of Mass Number at 0.325 MeV
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(4,20) Elastic Seattering CS at 0.365 MeV for Various Targets

1abl°

/A (amu) Elastic CS(B)
Tar el 7 0.3516
;‘l,i//- 12 2.1957
5C—1 24 2.2558
1-M& +—3¢ 1.4238
%ﬂa 40 1.1823
20-% 48 1.5479
i—-‘“‘fﬁ 2 8596
ol 14 3.5224
-l 3.7291
prCt —2 4.0642
_-}_,B,'.E-'-E-""-___g() 46569
,‘!.1.'%'-'1-""‘_193 45216
::SH — 120 3.8698
e |, 192 3.0769
N 144 26246
Gd 160 3.4424
T HT 180 4.7545
STl 200 5.2147
%0-Th 232 6.3745
U 238 6.7701

Elustic Scattering Cross-sections at 0.363 MeV Tor Various Targel

7.0

e
=
o

(¥
frl

4.0
EX Y

20

Elastic Scattering Cross-section (b)

_—

i L.

—_— ] . o == Llastic CS(H)

) |10 150 200 230

Muss Noamber (nmu)

1-'“!" gl et © F
£ (4.20) Klastic Scatlering €S dependance of Mass Number at 0.365 MeV
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glastic Scattering CS al 0.405 MeV for Various Targets

rahic [4'11}
A (amu)|Elastic CS(B)
7 0.3450
~ 12| 20937
= 4] 22536
36 | 4946
40 I 1955
4R 1 4842
80 2 6956
64 3.3429
72 3 5683
84 3 9698
96 4.6403
108 4.5475
120 39169
132 31318
144 2652
160 3.3242
180 4.5044
200 4.938
232 6 169
238 o 5854

Elisdiv Scallering: O rosa-spetions al [LHE el fur Vuriouy Tarzel

: o= fuste WS
Tl I

Hifl

Elastiv Sl.'.:l":'l'in:l (P rans=soclinmn 1h)

Llt

2{hl

b =t Jaui | Att
% 1ass Npmber {ramiet)

& o P P 5 Wy
EI.IEH-EI Fldastic Scatteru s dependanee pl Muss Number ai -0 Mek
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Elastic Scattering CS at 0.445 MeV for Various Targets

qable (4.22)

A amu Eﬂstif CS@J
g/’ﬁgﬁ:}’){ 0.3412
;ﬂ-’l/ 12 2.0008
ﬁ/"{:/',’ 24 2.2623
|;-I\’[I 316 1.5164
ﬁ-%,-— 40 1.2108
%—- 48 1.4371
%—-—-j 2.551
%—-" 64 3.1797
32;,.5;--*-""7_2 3.4193
;Sﬁ-l:--‘ 84 3.8796
ﬁ:ﬁ;ﬂ 96 46176
ﬁ'ﬂ 108 45663
-ga-:g;l'"_ 120 3.9599
Zo-Nd 144 2.6883
£4-Gd 160 3.2359
220 . 180 4.2896
21-Tl 200 4.6895

Elastic Scattering Cross-scctions at 0.445 MceV for "r"nrinus-T:;r;: ]

e ——Elastic CS(B)
oy 0.1
g
-é 5.0
£ 40
o
5
T 30
‘-.'Jj 20 -i
210
RN

0 S50 100 150 200 250

Mass Number (amu)

Fig (4
22} Flact; )
) Elastic Scattering CS dependance of Mass Number at 0.445 MeV
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bl (4.23) Elastic Scattering CS at 0.485 MeV for Various Targets
- —TElastic CS(B
(amu) | 12T ¢ CS(B)
L A 0.3375
I e TR
— 24 2.2662
IME 136 1.5386
-cl 0] 1.2276
W ——qg| 13957
ﬂ':’ — 56 2.4230
162 64 3.0307
2 72| 32810
pE w 37928
iihh — 96 4.5887
48 — 108 45779
) 120 3.9983
Xe 132 32409
oNd | 144 2.7318
G4 160 3.1724
Al 180 4.1056
81-Tl 200 4.4662
90-Th 232 57738
9-U 238 6.2156)
: Elastic Scattering Cruss-scctions at 0.485 MeY for Various Target
ERX ot cs®)
| g60f
‘_E' 50
B
B 40
Po
| ﬁ 2.0
-
f 00 L—

Fig (4.23) Elastic Scattering CS dependance of Mass

0

100 150
Muss Number (wmu)

200 250

Number at 0.485 MeV
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ple (4.24) Elastic Scattering CS at 1 MeV for Various Targets
T

ﬁfﬂ;ﬁu} Elastic CS(B)
TE T 7 0.3356
e T 12212
:‘;‘;ﬁ-"’""_ 24 22438
ﬂ'{:t — 36 1.7847
1;:6“ 20 1 4807
%;ﬁ"‘"" 48 1.2947
e | o8 16268
0 64 1.9143
32.Ge %) 2.1180
3857 84 2.8434
Mo 96 3.8970
15.Cd 108 42793
50-Sn 120 4.1112
S3-Xe 132 3.7552
60-Nd 144 3.4969
64-Gd 160 3.3920
72-Hf 180 32745
81-Tl 200 3 3081
90-Th 232 3.8815
92-U 238 4.2494

Elastiv Scattering Cross-sections at 1 MeV for Various Target

4.0

Elastic Scattering Cross-section (b}

o == LSl .L'ﬁ{HI

!
i
¥
i

50

100

150

200 250

Mass Number (umu) I

F-
%14.24) Blastic Scattering CS dependance of Mass Number at | MeV



Tﬂhif

" (amu)|Elastic CS(B)
@ﬂﬂ— 7 0.4035
PLL— 12 0.6988
6C_— 24 1.8889
-Mg_———7 1.9903
14 —+—% 1.894
32.%-’-‘-—-"”‘_ 28 1748
ﬂ‘F; — 56 16194
ZIZH 64 1.4773
:Z_GE — 72 1.4076
3857 - 84 1.7851
e 96 2.5224
T8 108 3.0554
%5 120 3.3868
AT 132 3.7427
AN 144 40725
12-Hf 180 3.7748
81-Tl 200 3.3013
90-Th 232 3.1458
92-U 238 32071

Elastic Scattcring Cross-section (b)

72

(4.25) Elastic Scattering CS at 2 MeV for Various Targets

Elustic Scattering Cross-scctions at 2 MeV for Yarious Target

. —e—Elastic CS(B)

50 100

150

200

Mass Number (amu)

Fig (4.25) Elastic Scattering CS dependance of Mass Number at 2 MeV

250 |
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Table (4.26) Elastic Scattering CS at 3 MeV for Various Targets

< (amu)|Elastic CS(B)
@‘ﬂﬁ'—_ 7 0 4847
}:.‘é‘f"" — 12 0 5307
e e 24 1 4965
12ME——56 1.994
Jf-"g;““ 40 2.0729
FL“'TT" 48 2.068
3—%’;“" 56 1 884
-;—a-g;"“ o4 | 6489
W ”_'__ 72 | 4946
ﬂf'j;;';"_ 84 1.5409
12-Mo_ 96 1.8497
28-Cd 108 2.1744
50-Sn 120 25543
54-Xe 132 3.0753
60-Nd 144 3.59
64-Gd 160 3.9776
72-Hf 180 4.0649
81-TI 200 40363
90-Th 232 378y
92-U 238 3 6638

Elastic Scattering Cross-sections at 3 MeV for Various Targel

43 - E—— " [ B ()

Elastic Scattering Cross-section (b)

s |

i
|
I
¥

[0 - S — i
i S0 Tt 150 200

Alass Number (amu)

E . ‘ .
18 (4.26) Elastic Scattering CS dependance ol Mass Number at 3 MeV

250
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Table (4.27) Elastic Scattering CS at 4 MeV for Various Targets

 Tamu)|Elastic CS(B)
ﬁ*‘/}, 7 0.5708
Pl — 12 0.4915
eC—1 24 1.1853
ME—1—3¢ 1.8677
(s T 2.0336
10-C2 —3 2.1609
Il ¢ 20777
%’“"’_&1 1.938
L e 7 1.8046
L 1659
-3§5-,,;,';" 96 1.6652
':{-55‘” 108 1.777
%.;g,r" 120 2.0367
axe | 132 2.4518
GoNd | - 144 2.9216
64-Gd 160 3.4123
Al 180 3.8612
BTl 200 42022
[90-Th 232 4.2018
92-U 238 41524

Elastic Scattering Cruss-sections at 4 McV for Various Target

4.5 e :_—._—'_Elaﬁ'l.h: CS{B{

[ 5% )
L¥ ]

2.0

W

o

Elastic Scattering Cross-scction (h)

0.5
0.0

B

0 50 100 150 200 250

Muss Number (amu)

Fig (4.27) Elastic Scatteri ng CS dependance of Mass Number at 4 MeV
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able (4:28) Elastic Scattering CS at 5 MeV for Various Targets

ﬁ A (amu) |Elastic CS(B)
3-Li 7 0.6519
5-C 12 0.5045
12-Mg 24 0.9605
17-Cl 36 1.6795
20-Ca 40 1.8835
22-Ti 48 2.1169
26-Fe 56 2.1755
30-Zn 64 2 1641
32-Ge 72 2.0759
38-Sr 84 | 8782
42-Mo 96 1 7545
48-Cd 108 1742
50-Sn 120 1 8309
54-Xe 132 2.0677
60-Nd 144 3.3967
64-Gd 160 28452
72-Hf 180 34161
§1-TI 200 3.9431
90-Th 232 43108
92-U 238 43314

Elastic Scattering Cross-sections at 5 MeV for Various Target

= —e—Elastic CS(B)

(¥ [}

- &

rd
"

o
o
—

Elastic Scattering Cross-section (h)

0 S0 100 150 200 250

Mass Number (amu)

Fig (4 28) Elastic Scattering CS dependance of Mass Number at 5 MeV
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Table (4.29) Elastic Scattering CS at 6 MeV for Various Targets

Target [A (amu)|Elastic CS(B)
3-Li 7 0.7177
6-C 12 0.5407
12-Mg 24 0.8073
17-Cl 36 1.4802
20-Ca 40 1.6945
22-Ti 48 2.0015
26-Fe 56 2.1824
30-Zn 64 2.2745
32-Ge 72 2.2508
38-Sr 84 2.1001
42-Mo 96 1.9731
48-Cd 108 1.8815
50-Sn - 120 1.8311
54-Xe 132 19116
60-Nd 144 2.1024
64-Gd © 160 2.4436
72-Hf 180 2.9486
81-Tl 200 3.5102
90-Th 232 41330
92-U 238 42144

Elastic Scattering Cross-sections at 6 MeV for Various Target

T E-I_:é!c C S[B )

Elastic Scattering Cross-section (b)

0.5 : /,/‘_____
= T 200 250

5 50 100 150

Mass Number (amu) |

Fig (4.29) Elastic Scattering CS dependance of Mass Number at 6 MeV



Elastic Scattering Cross-sections at 7 MeV for Various Target
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) Elastic Scattering CS at 7 MeV for Various Targets

ﬁhw{d,ﬁﬂ

~Tamu)| Elastic CS(B)
@:ﬁﬂ; 0.7658
3-Li 12 0.5896
@r:—”""ﬁ 0.7095
pMe_+—3¢ 1.2960
[ T 1.5038
20-C8 +—73 1.8532
f:%—-"'"_sﬁ 2.1172
}_'5'.-5“—-""__ 64 2.2858
e e ST 2.3349
%—-‘ 84 2.2824
e | % 2.2056
1. - 108 2.0761
0.0 120 1.9528
e Xe 132 1.9362
G0-Nd 144 2.0255
4-Gd 160 22142
72-Hf 180 2.5753
31-Tl 200 3.0798
90-Th 232 3.7985
92-U 238 3.9100

45 P
4.0

Elastic Scattering Cross-scction (b)

Fig (4

. —8— Elastic CS(B) | |

r ¥

50

100

150

200 250 |

Muass Numbuer (amu) '

30 .
) Elastic Scattering CS dependance of Mass Number at 7 MeV
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Table (4.31) Elastic Scattering CS at 8 MeV for Various Targets

Target 1A (amu)|Elastic CS(B)
3-Li 7 0.7987
6-C 12 0.6455
12-Mg 24 0.6545
17-Cl 36 1.1375
20-Ca 40 1.3299
22-Ti 43 1.6949
26-Fe 56 2.0046
30-Zn 64 it
32-Ge 7 2.3465
38-Sr 84 2.4097
42-Mo 96 2.3924
48-Cd . 108 2.2721
50-Sn 120 2.1373
54-Xe 132 2.0809
60-Nd 144 2.0895
64-Gd 160 2.1286
72-Hf 180 2.3436
31-T! 200 2.7526
90-Th 232 34123
92-U 238 3.5309

Elastiv Scattering Cross-sections at 8 McV lor Various Target

T — S TeT
i |

e
b

[ T N e
= lh =

._..
L
T

—
A

Elastic Scattering Cross-section (b)

=

L)
i
i

0 50 LU 150 ALt 254

M Number Gomu)

Fig (4.31) Elastic Scattering CS dependance of Mass Number at 8§ MeV
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Table (4.32) Elastic Scattering CS at 9 MeV for Various Targets

Target |A (amu)|Elastic CS(B)
3-Li 7 0.8203
6-C 12 0.7031
12-Mg 24 0.6330
17-C\ 36 1.0083
20-Ca 40 1.1816
122-Ti 48 1.5406
[26-Fe 56 1.8663
(30-Zn | 64 2.1243
[32-Ge | 72 2.3044
|38-Sr | 84 2.4608
42-Mo 96 2.5176
48-Cd 108 2.4431
50-Sn 120 2.3408
54-Xe 132 22771
60-Nd . 144 22238
64-Gd 160 2.1596
72-Hf 180 2.2603
81-Til . 200 2 548%
90-Th 232 3.0604
92-U 238 3.1723
[ S

Elastic Scattering Cross-sections at 9 MeV for Various Target
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Fig (4.32) Elastic Scattering CS dependance of Mass Number

at 9 MeV
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Table (4.33) Elastic Scattering CS at 10 MeV for Various Targets

Target |A (amu)|Elastic CS(B)
3-Li -7 0.8342
6-C 12 0.7573
12-Mg 24 0.6367
17-Cl - 36 0.909
20-Ca 40 1.0618
22-Ti 48 1.3984
26-Fe 36 1.7181
30-Zn 64 1.9973
32-Ge 72 2.2248
38-Sr 84 2.4702
42-Mo 96 2.5829
48-Cd 108 2.5759
S50-Sn 120 2.5287
S54-Xe 132 2.4744
60-Nd . 144 2.3896
64-Gd 160 2.2762
72-Hf 180 2.2972
81-Til . 200 2.4471
90-Th 232 2.7989
92-U 238 2.8964

Elastic Scattering Cross-sections at 10 MeV for Various Target
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Fig (4.33) Elastic Scattering CS dependance of Mass Number at 10 MeV



Table (4.34) The Elastic Cross-section of 12-Mg-24

81

E (MeV) |Scat2_Cs(b) |Jendle_CS(b) |Error(%)
1.0000 2.2437 3.4153 -52.22
2.0000 1.8889 2.2731 -20.45
3.0000 1.4965 1.6653 -11.28
4.0000 1.1853 1.4029 -18.36
5.0000 0.9605 1.1458 -19.29
6.0000 0.8073 0.9562 -18.44
7.0000 0.7095 0.7966 -12.28
8.0000 0.6545 0.6991 -6.81
9.0000 0.6329 0.6402 -1.15
10.0000 0.6367 0.6209 2.48
Comparison of Elastic CS of SCAT2 and JENDL 3.2 for Mg-24
—&— Scat2 Cs(b) |
E 35 s +JEnth_C5{b]E I
g 3.0 \
§ 25 \\
220 5
1.5 \\
1.0
0.5 it
0.0 T :
0 2 4 6 3 10 12
Energy (MeV) |
St J

Fig (4.34) Comparison of Elastic CS of SCAT2 and JENDL 3.2 for 12-Mg-24
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@ 35) The Elastic Cross-section of 92-U-238

Tabl®

/'5},312 Cs(b) [Jendle_CS(b) Error(%)

EMEST 42494 45372  -6.77

—>0 3.2071 3.5961 -12.13

_—30[ 36638 4.0847] 1149

[ty 4.1524 4.3800]  -5.48
50 43314 4.2500 1.88
5.0 4.2144 3.8687 8.2
70 3.9100 3.4274 12.34
30 3.5309 3.0472 13.7
50 3.1723 211371 1257
10.0 2.8974 2.6105 9.9

P s

g 1

Comparison of Elastic CS of SCAT2 and JENDL 3.2 for U-238
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Fig (4.35) Comparison of Elastic CS of SCAT?2 and JENDL 3 2 for 92.U-238
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